FRONTIERS IN
COMPUTATIONAL CHEMISTRY

Bentham Books



Frontiers in Computational
Chemistry

(Volume 8)

Edited by

Zaheer Ul-Haq

Dr. Panjwani Center for Molecular Medicine and Drug
Research
International Center for Chemical and Biological Sciences
University of Karachi
Karachi, Pakistan

&

Angela K. Wilson

Department of Chemistry
Michigan State University
East Lansing, MI
USA



Frontiers in Computational Chemistry

(Volume 8)

Editors: Zaheer Ul-Haq & Angela K. Wilson
ISSN (Online): 2352-9458

ISSN (Print): 2352-944X

ISBN (Online): 979-8-89881-216-4

ISBN (Print): 979-8-89881-217-1

ISBN (Paperback): 979-8-89881-218-8
©2025, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore, in collaboration with
Eureka Conferences, USA. All Rights Reserved.

First published in 2025.



BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement
carefully before using the ebook/echapter/ejournal (“Work”). Your use of the Work constitutes your
agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms
and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the
Work subject to and in accordance with the following terms and conditions. This License Agreement is for
non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please
contact: permission@benthamscience.org.

Usage Rules:

1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the
Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify,
remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way
exploit the Work or make the Work available for others to do any of the same, in any form or by any
means, in whole or in part, in each case without the prior written permission of Bentham Science
Publishers, unless stated otherwise in this License Agreement.

2. You may download a copy of the Work on one occasion to one personal computer (including tablet,
laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.

3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject
you to liability for substantial money damages. You will be liable for any damage resulting from your
misuse of the Work or any violation of this License Agreement, including any infringement by you of
copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that
it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is
provided "as is" without warranty of any kind, either express or implied or statutory, including, without
limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the
results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science
Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods, products instruction,
advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages,
including, without limitation, special, incidental and/or consequential damages and/or damages for lost data
and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire
liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including
non-contractual disputes or claims) will be governed by and construed in accordance with the laws of
Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to
settle any dispute or claim arising out of or in connection with this License Agreement or the Work
(including non-contractual disputes or claims).

2. Your rights under this License Agreement will automatically terminate without notice and without the


mailto:permission@benthamscience.org

need for a court order if at any point you breach any terms of this License Agreement. In no event will any
delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement
constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and
conditions. To the extent that any other terms and conditions presented on any website of Bentham Science
Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License
Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

No. 9 Raffles Place

Office No. 26-01

Singapore 048619

Singapore BENTHAM
Email: subscriptions@benthamscience.net SCIENCE


mailto:subscriptions@benthamscience.net

CONTENTS

PREFACE ... e ettt e e ettt e e et e e e et e e e e e eaaaeeseasaaeeeseeatatesessaresesateseessnseaees 1
LIST OF CONTRIBUTORS ....coooeiieeeeeeeeete ettt ettt ea e et e eseereeteensensesesneeneereeneens iii
CHAPTER 1 ADVANCEMENTS IN COMPUTER-AIDED DRUG DISCOVERY AND
DEVELOPMENT: A COMPREHENSIVE OVERVIEW ... 1
Harshkumar Brahmbhatt, Rahul Trivedi, Priyanka Soni and Vishal Soni
INTRODUCGTION ....oooiiiiiieeceeceeeeeee ettt ettt et et ettt et seeseeseersessesseseenseseeseeseeseeseeseeneeneen 2
FUNDAMENTAL PRINCIPLES OF CADD ...t 2

MOLECULAR MODELING .....ccoooiiiiiiiiiiiiieiteeeteeeet ettt 2
VIRTUAL SCREENING ......ccccooiiiiiiiiiiiiiiieieeteeee ettt 2
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP (QSAR) ANALYSIS ........ 3
HIGH-THROUGHPUT SCREENING (HTS) ....ccoeoiiiiiiiciieeieetere e 3
NETWORK PHARMACOLOGY ......cccoceineennne 4
FRAGMENT-BASED DRUG DESIGN (FBDD) 4
IN SILICO ADMET PREDICTION .......cccccccevveinnne 4
GRAPH-BASED NEURAL NETWORKS (GNNS) ..ottt 5
THE ROLE OF MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE IN CADD 6
Machine Learning Algorithms in Drug DiSCOVETY .....cccevieriiriiririeirieieieienesie e eeeeeeenee 6
AL-driven Drug DESIZN .....cccecuevierierierierienieneeteeeteieiesre st eeeene e s 6
APPLICATIONS OF CADD IN DRUG DISCOVERY AND DEVELOP s 6
Hit TdentifiCation ..........ccooivieiiiiiiieiiiiec e 6
Lead OPUMIZAtION ....coieieieieieteeieeteeteeteetetet et et e steste e s e eseeseessessessessesseeseeseeseessensensensensanss 7
Pharmacokinetic/Pharmacodynamic (PK/PD) Modeling .........cccecvevvevevereneneeieieieniesienns 7
Clinical Trial DESIZN ....cceeieieieieieeieetieteeeet ettt sttt tesbe b e besbeeseeseessensensensessensenes 7
CHALLENGES AND FUTURE PROSPECTS OF CADD 8
COMPUTER-AIDED DRUG DISCOVERY AND DEVELOPMENT ........ccccocccviininiinne. 8
REFERENCES ..ottt 8
CHAPTER 2 RECENT ADVANCES IN IN-SILICO DRUG REPURPOSING: LEVERAGING
COMPUTATIONAL TOOLS FOR ENHANCED THERAPEUTIC DISCOVERY ..................... 11
Jaimini Patoliya, Khushali Thaker and Rushikesh Joshi

INTRODUCGTION ..ottt s 12

Definition of Drug Repurposing ..... 12

Strategic Advantage of Drug Repurposing ... . 12

Historical MIIESTONES .........cciiiiiiiiiiiiiiiiiiiciciieee e 13

Distinctive Paths: How Repurposing Differs ..........ccocecveoininiinininicnnnceenccnceeeeeene 14

Pathways of Innovation: De Novo vs. Repurposed Drugs  .............coccvcevecencervccnecnae. 14

Poly-pharmacology vs. Repurposing ..............cocce.... .. 15

Benefits, Barriers, and Boundaries of Drug Repurposing .........c..ccceccveeerennicncincnercnccnnens 15

Strategic AAVANIAZES  .............cccccvueeuviiniiiriiiiinietec ettt 15

Challenges and Limitations Associated with Drug Repurposing .............c.cccceveennee 16

In Silico Drug Repurposing ........c..cocecevveeereineneinenineneecneeneseeenneeenes 17

Applications of Computational Chemistry in Drug Repurposing ... 18

TOOLS AND DATABASES FOR IN SILICO DRUG REPURPOSING ... 20

Tools used in In Silico Drug REPUIPOSING ....cc.evviruieuieieieieieieeieeteeeeeetete et 26

Data Management and INEGration ...............cccccuueeerineeoinueniiinieinieeeeieeeeseeeeeneeeaes 26

Systems Biology and Network Analysis Tools ................c......... e 27

Cheminformatics and Molecular Modelling ...............c..cccccoecveeninccninniinecincneens 28

ML GRA AL ... 29

Visualisation and ARGLYSIS —............cccocovecirioiiiiniiiiniiiinieeeeete ettt 29



In Silico Tools to Mitigate Pathway Interference in Drug Repurposing .......c..cccceceeveevieniennene 30

Databases used in n Silico Drug Repurposing .......cccceceeveeererieienieneneneneneseeeeee e 30
VARIOUS EXAMPLES OF DRUG REPURPOSING .......cccooviiiiiiniiininieicieneieicnenieneieneneene 33
Drugs in In Silico Repurposing Phase ..........cccccoeviiirinininiiieeeeeseseeseeeee e

Oncology and Cancer TRETAPY ......ccoeeeeeeeieiieieiieieneseeee ettt
Infectious Diseases
Neurological DISOTAETS ..........ccccocieieieiiiiiiiieiesesestsee ettt
Cardiovascular DISEASES ...........cccecueeueierierieriiiieeteteee ettt
AULOTINIMUNE DIESEASES ...ttt ettt st
Drugs in Pre-clinical and Clinical Trials
Oncology and Cancer Therapy
INfECHIOUS DISCASES  ....oneeneieiiiieieeeeeeteet ettt ettt sbe st i
Neurological DISOTAETS ..........cccceoieieieiiiiiiiieesesest ettt
Cardiovascular DISEASE .............couecuecuiiuininiiiiiieneetetee ettt
AULOTINIMUNE DIESEASES ...ttt ettt
Success Stories of Repurposed Drugs ...
Oncology and Cancer Therapy ...
Infectious Diseases .......................
Neurological DISOTAETS ..........ccccocieieieiiiiiiieiesesest sttt
Cardiovascular DISEASE .............couecuecuiiieiiniiiirieeietetete ettt sttt
Autoimmune Diseases ........
ABBREVIATIONS ..o
REFERENCES ..ottt ettt st sttt es

CHAPTER 3 COMPUTATIONAL DESIGN OF THERAPEUTIC PEPTIDES ............cccc.c..c. 71

Priyanka Ray Choudhury, Siddharth Yadav, Shivika Jaiswal, Tushita Khanna and Puniti
Mathur

1. INTRODUCGTION .ottt ettt ettt ettt nnene 71

2. BRIEF HISTORY OF PEPTIDE BASED DRUG DEVELOPMENT .........cccoocecccinneienns 73

3. APPLICATION OF PEPTIDE-BASED DRUGS

3.1. Peptides a8 THEIrAPEULICS ....c.oiuerieiirieeieieieterteicete ettt ettt ettt sb e ee et sbe e neene

3.2. Peptides in DIa@NOSLICS ...cc.eeiuerieuirieiieieieterieiete ettt ettt nene

3.3. Peptides as Nanomaterials .........coceoeereireieinie ettt

4. METHODS IN COMPUTATIONAL PEPTIDE DESIGN .....cccocceiimiininnciineicenenneneee

4.1. De Novo Peptide DeSign ......ccceeveeirieiriinieiiieieiereeseeeie e

4.2. Peptide Design for Inhibition of Protein-protein Interactions (PPI)

5. TOOLS AND RESOURCES FOR COMPUTATIONAL PEPTIDE DESIGN .................... 87

5.1. Peptide Specific Databases .........ccecerieirieiriirieiieieiete ettt 87

5.2. Pharmacophore Models in Peptide Design .........cccooeoieerieinieiniieieesieeiese e 92

5.3. Peptide-specific Molecular Docking and Lead Optimization Strategies ..

5.3.1. Peptide Specific DOCKING  .........cccooeiiiiiiiiieeieeeeeeean . 92

5.3.2. Hit Identification and Virtual SCreening ...........cccccceeveeeoeneeeseseoeseeseseeaens 96

5.3.3. Applications of Molecular Docking in Peptide Drug Design ..............ccccccu..... 96

5.3.4. Role of MD Simulations in Understanding Binding Interactions ...................... 97

5.4. ML-based Predictive Models in Peptide Drug Design

6. CHALLENGES IN PEPTIDE-BASED DRUG DESIGN .....

6.1. Membrane Permeability ...........ccccoeerrieneieniniriieene

6.2. POOT SEADILILY  .o.eouietiietieie ettt ettt

6.3. Low Oral Availability .......cccocooieiiieiiieie e

CONCLUSION

REFERENCES




CHAPTER 4 ADVANCING DRUG DISCOVERY THROUGH MOLECULAR DYNAMICS

SIMULATIONS: A COMPREHENSIVE APPROACH ......ccccooooiiiiiiiniccinecteneceeeeveenenane 129
Amneh Shtaiwi, Imane Yamari, Samir Chtita and Rohana Adnan
INTRODUCGTION ..ottt sttt be s be e seaeen 130
BASIC PRINCIPLES OF MD SIMULATIONS ...c.ooooiiiiiiiinneeireictneeieeeneereveeneeneeeneenes 131
FOICE FIELA .ttt ettt sttt 131
Newton's EQuations 0f MOtION ........cciiirieiiiiiriiieisieeer ettt 134
Periodic Boundary CONdItionS ........c.eovrierieirieieieietiseeceie ettt 134
Ensembles and Thermodynamic CONtrol ...........cccoeoeireiiiinieineeeeeeeeeeeee e
Time and Length SCALES ........cceiiiiiiiieieieie ettt
SIMUIAION OULPULS  ..eeeeieiiieteieieie ettt ettt b et b et se e se b e s e
Simulation Procedure ...............
Software for MD Simulation ....
CASE STUDIES ......ccocoiiiiiiiiinnccireneetreeeieeneeneienens
Applications of MD Simulations in Cancer Therapy ........cccoceveeeereinenieeneineneeseeeeene
Targeting Mutant P53 PrOTEINS .......cceceeeeeeieiieiienienienienienieeeeee ettt
Inhibition of Kinase Proteins .........c..ceeuveeceeeeceneeenenes
Recent Advances in Allosteric Sites and Novel Targets ...
Addressing Drug Resistance Mechanisms  .........................
Diabetes Case Study: Recent Applications of MD in Therapy ........cccceceeerererieeneieneninennne 143
Glucagon-like Peptide-1 (GLP-1) Receptor AQONISLS .........ccccocevcercenerccneeeenecnienennenes 143
Inhibition of Dipeptidyl Peptidase-4 (DPP-4) ......ccccccououoioineoieeeeneiseeeeseeeeeeiens 145
AlZheimer's DISEaSe (AD) .iciciiieiiieiieiietieieeet ettt sttt te et sa s besbeebeeteesaessessenes 145
Amyloid-beta AGGreGatiOn ..........ccccoeeeeeeiieiiiniininiineieeteeetestes ettt 145
Tau Protein DYNAMICS ......cc.cocoveeeeeeiiiinienieniisieeteiteeete ettt sttt saesae s 147
Acetylcholinesterase INMIDITOTS ..........ccccecueuevierieninininiieeeeee ettt 147
Applications of MD in Infections TRErapy ........ccoceceverirenieinieiieeeeeeeeeee e 152
BaACIEFIQL INECHIONS ...ttt eenen 152
Viral Infections
Leishmaniasis and Malaria Parasite TRErapy ...........ccceceveeeeeeeeccienicneneneneneseeeens 155
CONCLUSION AND FUTURE DIRECTIONS ...c.ccooiiiiiiiiiiiininiceinereietneerenteseeveeseseeseseees 157
REFERENCES ......ocoiiiiiiicectnte ettt ettt sttt enenean 158
CHAPTER 5 ADVANCES IN QUANTUM MECHANICAL METHODS FOR THE
COMPUTATION OF PROTEIN-LIGAND BINDING FREE ENERGY  .......ccccooviniiiicne 166
Peng Xu, Tosaporn Sattasathuchana, Simon P. Webb, Mark S. Gordon and Emilie B.
Guidez
1. INTRODUCGTION .ottt ettt et 166
2. APPROACHES TO THE COMPUTATIONAL PREDICTION OF PROTEIN-LIGAND
BINDING FREE ENERGIES ........ccccociiiiiiiiiiiecineceeeeeene ettt 168
2.1. Protein-ligand Relative Binding Free Energy (RBFE) Methods (AAGbind) ................... 168
2.2. Protein-ligand Absolute Binding Free Energy (ABFE) methods (AGbind) .................... 169

2.2.1. Classical Protein-ligand End-point ABFE Methods ............ccceceeeveveeenenreannne. 170
2.2.2. Introduction of QM Potentials into Protein-ligand End-point ABFE Methods 172
3. CHALLENGES IN QM-BASED END-POINT PROTEIN-LIGAND ABFE
COMPUTATION ..ottt ettt ettt a st e e s et es e e ss et entseebeseneeseseseneesesenens
3.1. Protein-ligand Potential Energy Calculations
3.2. Solute Entropy Penalty Contribution ...............
3.3. Solvation Models for Accurate GSOLV ........ccoirieirieiiiieereeee s
4. QUANTUM MECHANICS-BASED APPROACHES USED IN THE COMPUTATION
OF POTENTIAL ENERGY ..ottt ettt ettt esenenn 175




o B 01, 14\ 1Y 1Y (<71 1 T T PSPPSRI 176
4.2 ONIOM .ottt ettt stttk t bbbt 177
4.3. Fragmentation MethOdS .........cocooiiiriiiiiiiiieeee et 179
4.3.1. The Fragment Molecular Orbital (FMO) Method .............ccccoocuveuvveencncnenanann. 179
4.3.2. The Effective Fragment Potential (EFP) Method .............cccccccoovcevvinvenvniennennens 182
4.3.3. The Effective Fragment Molecular Orbital (EFMO) Method ..................ccccoc... 186
5. EXPLORATION OF CONFORMATIONAL SPACE AND CONFIGURATIONAL
ENTROPY ..ottt ettt ettt sttt b btk b ettt se e naebenens
5.1. Conformational SAMPLING ......ccceeriiriiriiiiiiiiieeee ettt
5.2. Computation of Configurational ENtropy .........cccceoeviiririnenininieieieiesesiese e
6. IMPLICIT AND EXPLICIT SOLVATION MODELS
7. ENHANCING THE VM2 ALGORITHM WITH QM POTENTIALS (QM-VM2) ............ 195
7.1. The Mining-minima End-point ABFE Method: Basics of the VM2 Algorithm ............. 195
7.2. Description of the QM-VM2 APProach .......cccceceeoeeiiirineninieneneiieeeseeseseee e
7.3. Protein-ligand Implementation of the QM-VM2 Approach (PLQM-VM2) ..........cccceeee
7.4, IMPIEMENLALION ..eveitiiiiiiiiieieieteeteete ettt ettt ettt ettt et sbe e
7.5. Performance of PLQM-VM2 on Protein-ligand Binding Affinity Predictions
7.6. PLQM-VM2: Towards A Multi-protein Screening Capability ...........cccccocenene
SUMMARY AND OUTLOOK ....c.oooiiiiiriiiiiiniiciinietetteteteitt ettt ettt s e
REFERENCES ..ottt ettt ettt ettt ettt ettt na b

CHAPTER 6 CURRENT TRENDS IN COMPUTATIONAL METHODS TO DISCOVER NEW
ANTI-INFLAMMATORY AGENTS TARGETING NLRP3 COMPLEX .......c..ccoooovieiiieeeiene 236
Karla Joane Da Silva Menezes, Fernanda de Frangca Genuino Ramos Campos,
Arthur Gabriel Corréa De Farias, Wallyson Junio Santos De Araujo, Igor José Dos,
Santos Nascimento and Ricardo Olimpio De Moura

INTRODUCGTION ..ottt ettt ettt b s bbbttt et estesaesaesieebeeneene 237

PHYSIOLOGY OF INFLAMMATION .....ooiiiiiiiiiinineteteteeese ettt 239
Pharmacological INErVENtION ..........ccociirieirieieiiieiteteet ettt st 243
Inflammasomes Function

TARGETING NLRP3 INHIBITION ..ottt ettt 247
Structure and FUNCHONS ......ooiiiiiiiieiieee ettt 247
Catalytic MECHANISII .....cuiiiiieiiiteiietiiet ettt ettt sbe e eeene 247
Drug Design and DISCOVETY .....coieiruirieieieietiiieieteeee ettt ettt see e eee e s see e eteseeneeeenes 249

PROMISING NLRP3 INHIBITORS IDENTIFIED USING COM

METHODS ..ottt ettt ekttt sttt s e bt enebenn 249
Molecular Ling and Molecular Dynamics (MD) Simulations ............ccceoeeeeeenecreneenecnes 250
Virtual High Throughput Screening (VHTS) ...cooiioiiiiiiieeeeee e 252
Pharmacophore MOAELS .........ccooueiiiiieieieeie ettt 254
Quantitative Structure-Activity Relationship (QSAR) and Machine Learning Methods ....... 255

CHALLENGES AND OPPORTUNITIES TO DESIGN NEW ANTI-INFLAMMATORY

DRUGS TARGETING NLRP3 ..ottt 260

CONCLUSION ..ottt ettt ettt b ekt b ettt s s seenaenen 261

CONFLICT OF INTEREST ...ttt ettt ettt 261

ACKNOWLEDGEMENTS

REFERENCES ...ttt ettt ettt b e st b ettt ae st et

CHAPTER 7 COMPUTATIONAL MODELLING OF PHOTOPHYSICAL PROCESSES ........ 269

Rituparna Saha, Satadal Paul and Debosreeta Bose

INTRODUCGTION ....oooiiiiiiiiiiiiieieieieietetetet ettt ettt ettt bttt b ettt b et s b st bbb bbb ebesesebenesesenenenen 270
Overview of PhotophySiCal PIOCESSES .....ceecveierierieriirieriieieieieieiestest et eie e ese e sae e saesneas 271

THEORETICAL BACKGROUND ... s 274



COMPUTATIONAL METHODOLOGY .....coooiiiiiiiiiiicieeeeeseete ettt 276

EXCItEA STALES ..ouviiiiiiieiie ettt e et e e et e e et e e e ete e e eateeeteeeetaeeeareeenteaeaeeas 283

Basis FUNCHION ......ooiiiiiiiiiiie ettt e e et e et e e te e et e e eateeeareeenneas 284

QUANTITICATION  .oiuvieiiieiieeieeie ettt e et e e e eeaa e e taestaesseessaesseenseesseenseesseensesssenssenseas 285
APPLICATIONS oottt ettt et e et e et e et e eteeete e et e eeaeenseeneeenteeasesaeeeaeeereenis 286
SUMMARY .
ACKNOWLEDGEMENTS ...ttt ettt et e e et eaeeeaeeeaeeeaeenreenveenreeneas 291
REFERENCES ..ottt ettt ettt e et e et e et e eateete e eae e st eaeeaeenseenaeenteenseenteeneas 291

SUBJECT INDEX



PREFACE

Computational Chemistry continues to play a transformative role in modern scientific
research, integrating diverse computational strategies to address challenges in drug discovery,
materials design, and molecular-level understanding of complex biological systems. The
Frontiers in Computational Chemistry series aims to provide a platform for the dissemination
of cutting-edge research and applications of computational techniques in chemistry and
biology. This includes advancements in computer-aided drug design, quantum and molecular
simulations, peptide modeling, and the development of novel computational algorithms that
contribute to the efficient exploration of chemical and biological phenomena.

In this eighth volume, we present seven chapters that collectively highlight the latest progress
and methodological innovations across different domains of computational chemistry—from
broad overviews of computer-aided drug discovery to specialized approaches using quantum
mechanical and molecular dynamics simulations.

Chapter 1, “Advancements in Computer-Aided Drug Discovery and Development: A
Comprehensive Overview,” provides an integrated understanding of the computational tools
and strategies used in modern drug discovery. It emphasizes the pivotal role of artificial
intelligence and machine learning in streamlining target identification, virtual screening, and
lead optimization.

Chapter 2, “Recent Advances in In-Silico Drug Repurposing: Leveraging Computational
Tools for Enhanced Therapeutic Discovery,” discusses how computational modeling,
network pharmacology, and data-driven approaches are revolutionizing the repurposing of
existing drugs for new therapeutic indications, significantly reducing time and cost in the
development pipeline.

Chapter 3, “Computational Design of Therapeutic Peptides,” explores the growing
importance of peptide-based drugs, focusing on computational methods for peptide design,
optimization, and molecular simulation. It highlights how computational strategies help
overcome challenges of stability, delivery, and bioavailability in peptide therapeutics.

Chapter 4, “Advancing Drug Discovery through Molecular Dynamics Simulations: A
Comprehensive Approach,” demonstrates how molecular dynamics simulations serve as an
essential bridge between static molecular structures and dynamic biological function. The
chapter presents applications of MD in understanding conformational flexibility, binding
mechanisms, and drug stability.

Chapter 5, “Advances in Quantum Mechanical Methods for the Computation of Protein-
Ligand Binding Free Energy,” delves into the recent progress in quantum chemical
techniques, emphasizing accurate modeling of binding energetics and electronic interactions.
The discussion provides valuable insight into hybrid and fragmentation-based approaches that
enhance prediction reliability.

Chapter 6, “Current Trends in Computational Methods to Discover New Anti-inflammatory
Agents Targeting NLRP3 Complex,” focuses on the computational exploration of
inflammasome biology and presents novel approaches for identifying NLRP3 inhibitors using
structure-based drug design and molecular modeling strategies.



ii

Chapter 7, “Computational Modelling of Photophysical Processes,” broadens the scope of
this volume by addressing photophysical and photochemical properties of molecules through
quantum chemical simulations. This chapter highlights how computational modeling aids in
the understanding of excited-state processes relevant to biotechnology, medicine, and energy
materials.

We hope that this volume serves as a valuable contribution to the growing body of
computational chemistry literature and provides readers with both conceptual clarity and
practical insights into current research trends. Together, these chapters reinforce the pivotal
role of computational methods in driving innovation across molecular sciences and
pharmaceutical research.

Zaheer Ul-Haq

Dr. Panjwani Center for Molecular Medicine and Drug Research
International Center for Chemical and Biological Sciences
University of Karachi

Karachi

Pakistan

&

Angela K. Wilson
Department of Chemistry
Michigan State University
USA
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CHAPTER 1

Advancements in Computer-Aided Drug Discovery
and Development: A Comprehensive Overview

Harshkumar Brahmbhatt"’, Rahul Trivedi', Priyanka Soni’ and Vishal Soni*

" Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat,
India

? B. R. Nahata College of Pharmacy, Faculty of Pharmacy, Mandsaur University, Mandsaur,
Madhya Pradesh, India

Abstract: Computer-aided drug discovery and development (CADD) has emerged as a
transformative approach in the pharmaceutical industry, revolutionizing the traditional
drug development process. This abstract provides a comprehensive overview of the
latest advancements, methodologies, and applications in CADD. The first section
outlines the fundamental principles of CADD, emphasizing its integration of
computational techniques, algorithms, and databases to expedite the identification of
potential drug candidates. Molecular modeling, virtual screening, and quantitative
structure-activity relationship (QSAR) analysis are highlighted as primary techniques
used to predict ligand-target interactions and optimize drug properties. The second
section discusses the role of machine learning (ML) and artificial intelligence (Al) in
CADD, showcasing their capability to analyze vast datasets, identify patterns, and
predict novel drug-target interactions with unparalleled accuracy. ML algorithms, such
as deep learning, have shown promising results in de novo drug design, target
identification, and toxicity prediction. In the third section, the application of CADD in
various stages of drug discovery and development is explored. From hit identification
and lead optimization to pharmacokinetic/pharmacodynamic (PK/PD) modeling and
clinical trial design, CADD tools streamline decision-making processes, reduce costs,
and accelerate the development timeline. Furthermore, this chapter addresses the
challenges and future prospects of CADD. Despite its remarkable achievements,
CADD still faces limitations, such as the accurate representation of biological systems
and the integration of multi-scale modeling approaches. Additionally, ethical
considerations regarding data privacy, intellectual property rights, and regulatory
compliance remain pivotal in the widespread adoption of CADD methodologies.
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INTRODUCTION

The landscape of drug discovery and development has experienced a profound
transformation with the advent of computer-aided drug discovery and
development (CADD). Traditionally, the drug discovery process was arduous,
expensive, and time-consuming, often taking over a decade and billions of dollars
to bring a new drug to market. However, the integration of computational
techniques has revolutionized this paradigm, making the process more efficient,
cost-effective, and accurate. This chapter provides a comprehensive overview of
the latest advancements, methodologies, and applications in CADD, highlighting
its pivotal role in modern pharmaceutical research [1, 2].

FUNDAMENTAL PRINCIPLES OF CADD

CADD employs a wide array of computational techniques, algorithms, and
databases to expedite and enhance the drug discovery process. At its core, CADD
aims to predict ligand-target interactions, optimize drug properties, and streamline
the decision-making process in drug development. The fundamental principles of
CADD can be categorized into several key methodologies: molecular modeling,
virtual screening, and quantitative structure-activity relationship (QSAR) analysis

[3].
MOLECULAR MODELING

Molecular modeling involves the use of computational techniques to model or
mimic the behavior of molecules. It includes methods such as molecular dynamics
(MD) simulations, which explore the physical movements of atoms and molecules
over time, and quantum mechanics/molecular mechanics (QM/MM) approaches,
which provide detailed insights into molecular interactions at quantum levels.
These techniques allow researchers to predict the structural and functional
properties of drug candidates, facilitating the identification of promising
compounds [4].

VIRTUAL SCREENING

Virtual screening (VS) is a computational process used to search large libraries of
compounds to identify those that are most likely to bind to a drug target, usually a
protein receptor. There are two main types of virtual screening: ligand-based and
structure-based. Ligand-based virtual screening relies on known active
compounds to predict the activity of new molecules, while structure-based virtual
screening uses the three-dimensional structure of the target protein to identify
potential ligands. These methods significantly reduce the number of compounds
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that need to be tested experimentally, thereby accelerating the drug discovery
process [5, 6].

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP (QSAR)
ANALYSIS

QSAR analysis involves the development of mathematical models to predict the
biological activity of compounds based on their chemical structure. By correlating
chemical structure with pharmacological activity, QSAR models can predict the
efficacy and toxicity of new compounds. This method is invaluable in optimizing
drug candidates, ensuring that only the most promising compounds progress
through the development pipeline [7].

- Model Development: QSAR models can be developed using various statistical
and machine learning techniques. Common approaches include linear
regression, decision trees, and neural networks. The choice of model often
depends on the complexity of the data and the specific application.

- Descriptors: To correlate chemical structure with biological activity, QSAR
analysis uses molecular descriptors, which are numerical values representing
different properties of a compound. These can include topological, electronic,
steric, and hydrophobic descriptors.

- Validation: A crucial part of developing QSAR models is validation, which
ensures that the model can reliably predict the activity of unseen compounds.
This is typically done using techniques like cross-validation and external
validation with independent test sets.

- Applications: QSAR analysis is not limited to predicting efficacy and toxicity.
It can also be employed in environmental chemistry to predict the fate and
transport of chemicals, in toxicology to assess potential hazards, and in materials
science for designing new materials with specific properties.

- Regulatory Acceptance: Regulatory agencies, such as the FDA and EPA,
increasingly recognize the value of QSAR models in risk assessment and
regulatory decision-making. However, these models must be rigorously
validated to ensure their reliability in predicting real-world outcomes [8, 9].

HIGH-THROUGHPUT SCREENING (HTS)

High-Throughput Screening (HTS) is a powerful technique used in drug
discovery that enables the rapid testing of thousands to millions of compounds for
their biological activity against specific targets. The method automates the process
of compound testing, allowing researchers to quickly identify potential drug
candidates from vast chemical libraries. HTS can be employed to identify
compounds that interact with multiple targets, leading to a better understanding of
complex diseases [10].
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CHAPTER 2

Recent Advances in In-Silico Drug Repurposing:
Leveraging Computational Tools for Enhanced
Therapeutic Discovery
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Abstract: Drug repurposing, or repositioning, is a key strategy in biomedical
innovation, leveraging existing approved drugs for new therapeutic uses. This approach
significantly cuts development costs and shortens the lengthy traditional drug approval
timelines. This approach is especially valuable for rare diseases, addressing unmet
needs by overcoming the high costs and challenges of developing new treatments. Drug
repurposing optimises drug utility and strategically allocates limited research resources.
In silico techniques have unlocked extraordinary opportunities in this domain, offering
a pathway to identify and validate new therapeutic indications. This can expand
treatment options and greatly improve the precision of targeted therapies. The field of
drug development has undergone an enormous shift with the introduction of in silico
techniques. Advanced computational techniques, such as artificial intelligence (Al),
machine learning (ML), and chemo-informatics, have driven a paradigm shift in
identifying and developing new drug applications. These technologies use vast
databases and advanced bioinformatics to uncover elusive drug-target interactions.
Tools like Reactome and the Kyoto Encyclopaedia of Genes and Genomes (KEGG)
have proven to unravel the complex interactions governing drug efficacy. The focus on
a holistic approach, integrating diverse sets of biological, clinical, and epidemiological
data, has been instrumental in opening new avenues for repurposing opportunities.
Success stories highlight the impact of in silico drug repurposing, showcasing its role
in meeting unmet medical needs and transforming therapeutic development. While in
silico drug repurposing prospects are undeniably promising, the field is not without its
challenges. The conclusion explores current challenges and potential solutions,
highlighting how innovative computational approaches can revolutionise drug
development, enhancing efficiency, cost-effectiveness, and speed. The ultimate aim is
to advance personalised medicine and improve patient care with unprecedented
precision.
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INTRODUCTION

Definition of Drug Repurposing

Sir James Black, the 1998 Nobel Prize in Physiology and Medicine Laureate,
famously stated, “The most fruitful basis for the discovery of a new drug is to
start with an old drug.” Drug repurposing leverages this principle to accelerate the
development of new treatments for various diseases and conditions. By bypassing
the traditional drug discovery process, which is often time-consuming and costly,
drug repurposing utilises existing knowledge about the safety and
pharmacokinetics of approved drugs [1]. Drug repurposing, also known as drug
repositioning, is the process of identifying new therapeutic uses for existing drugs
that were originally developed for a different indication [2]. The National Center
for Advancing Translational Sciences (NCATS) in the USA defines drug
repurposing as “studying the drugs that are already approved to treat one disease
or condition to see if they are safe and effective for treating other diseases” [3].
This definition excludes substances that have not yet undergone clinical
investigation, specifically those held in chemical libraries by academic and
industry research groups for screening to identify new biological properties. Drug
repositioning excludes any structural modification of the drug. Instead, it utilises
the drug's existing biological properties for which it has already been approved,
potentially with a different formulation, at a new dose, or via a new route of
administration. Alternatively, it can exploit the side properties of a drug
responsible for its adverse effects to find new therapeutic uses [4].

Repurposing existing drugs offers numerous advantages. The safety, efficacy, and
toxicity of such drugs have typically been extensively studied, providing
substantial data to support gaining approval from regulatory bodies such as the
United States Food and Drug Administration (FDA) or the European Medicines
Agency (EMA) for new indications. The availability of this data offers hope to
patients with rare cancers for whom the development of new treatments would be
prohibitively expensive. Additionally, repurposed drugs generally receive
approval more quickly, within 3 to 12 years, and at a reduced cost of 50-60% [5].
This expedited process and cost efficiency make drug repurposing a highly
attractive strategy in modern pharmaceutical development.

Strategic Advantage of Drug Repurposing

Drug repurposing is increasingly recognised as a valuable approach within the
pharmaceutical industry. Traditionally, pharmaceutical companies begin the R &
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D (Research & Development) process by targeting a specific condition and
focusing their resources on modifying it appropriately. However, the effects of
pharmaceuticals often extend beyond their initial targets due to their ability to
influence various biological processes. Pharmaceutical compounds, including
small molecules and other active agents, can interact with multiple genes,
proteins, and molecular pathways, thereby affecting the genotype and phenotype
of humans in both controlled and unforeseen ways. This inherent characteristic of
drugs creates opportunities to explore their potential for treating conditions other
than those for which they were originally developed.

Approximately 45% of drug development failures are attributed to safety or
toxicity issues [6]. Addressing these safety concerns and potentially reducing the
average drug development time by 5-7 years makes drug repurposing an attractive
strategy. This approach offers significant benefits to both drug developers and
patients. For developers, it presents a more cost-effective and less time-
consuming path to bringing drugs to market. For patients, it ensures quicker
access to treatments with well-documented safety profiles. Pharmaceutical
companies possess core expertise in clinical development and are well-positioned
to systematically pursue drug repurposing. Leveraging partnerships and
collaborations can enhance their chances of identifying successful repurposing
candidates. The recent surge in biomedical data, including genomic information
and big data from electronic medical records (EMRs), claims data, social media,
and sensor data, has created a critical substrate for systematically assessing
repurposing candidates. Advances in analytical methods further support this data-
driven approach [7]. The accumulation of diverse data types enables a holistic
understanding of drugs and diseases, facilitating effective repurposing strategies.
This data-driven methodology increases the productivity of drug discovery and
aligns with the industry's mission to efficiently bring effective treatments to
patients.

Historical Milestones

Aspirin, marketed by Bayer in 1899 as an analgesic, is considered the oldest
example of drug repurposing. In the 1980s, researchers repurposed aspirin as an
antiplatelet aggregation drug at low doses [8]. Aspirin is now used to prevent
heart attacks and strokes in patients with cardiovascular disease. Aspirin may
soon be repositioned for use in oncology. Studies have shown that daily aspirin
administration for at least five years can prevent the development of various
cancers, particularly colorectal cancer [9]. Aspirin's protective effect against
cancer is believed to result from COX-2 inhibition, which blocks the anti-
apoptotic effect of COX-2 on malignant cells and promotes their apoptotic death.
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CHAPTER 3

Computational Design of Therapeutic Peptides
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Abstract: Peptides have emerged as promising candidates in therapeutics and
diagnostics due to their unique properties. They offer advantages over traditional small
molecule drugs, including high specificity, reduced off-target effects, biocompatibility,
and biodegradability. However, peptide-based therapeutics also present challenges of
low stability, delivery, synthesis, membrane permeability, and oral availability. Many
strategies such as cyclisation, incorporation of N- and C- terminal protecting groups,
and non-standard amino acid design of appropriate peptide delivery systems have been
adopted to mitigate these challenges. Computational techniques enable faster design
and development and reduce experimental costs involved in drug discovery and design
and therefore, have gained prominence for in-silico testing and development of
peptides. This chapter explores methods involved in the computational design of
therapeutic peptides, with significant attention to peptide-specific molecular docking
tools, lead optimization strategies, and Molecular Dynamics (MD) simulations. We
also discuss the applicability of peptides in biomedicine and review specialized peptide
databases, exemplified by the case study of the PepEngine. A compendium of Machine
Learning (ML) tools used in peptide drug design highlights the latest advances in the
field. Peptide-based therapeutics are highly promising due to their lower
bioaccumulation and toxicity along with high specificity. Many peptide-based drugs,
such as insulin, oxytocin, and enfuvirtide, have been widely accepted for therapeutic
applications. By mitigating the challenges faced in peptide design and aiding in the
development of novel therapeutic peptides, computational approaches have played an
instrumental role in the peptide drug development process.

Keywords: Computational drug design, Computational drug development,
Computational peptide design, In-silico peptide analysis, Peptides, Peptide design,
Peptide docking, Peptide databases, Peptide stability, Peptide delivery.

1. INTRODUCTION

Peptides are small fragments of protein; they act as signaling entities in biological
systems and can be used in diverse therapeutic applications as well as founda-
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tional units for functional biomaterials [1]. Bioactive peptides with specific
activities can be designed for use in the pharmaceutical sector and therapeutic
biomedical research. Peptides have been used for different therapeutic
applications- some notable examples are exendin-4 and pramlintide for diabetes
[2, 3], enfuvirtide for the treatment of AIDS [4], bortezomib for the treatment of
myeloma [5], and leuprolide for the treatment of prostate cancer [6]. Peptide
hormones such as insulin, oxytocin, calcitonin, vasopressin, etc. are popular drugs
for the treatment of diabetes, psychiatric disorders, osteoporosis, and diabetes
insipidus, respectively [7 - 11]. Cell-penetrating peptides have lately been
extensively used as carriers for intracellular delivery of cargo such as proteins,
nucleic acids, and therapeutic agents. Short peptides have also been reported to
form nanospheres, nanotubes and hydrogels for efficient delivery of drugs. In
comparison to small molecules, peptides possess increased potency, selectivity, a
broader range of targets, potentially lower toxicity, and lower accumulation rates
making them favorable for therapeutic applications. There are however certain
drawbacks to peptides such as low bioavailability, inability to pass through the
cell membrane and blood-brain barrier, lower stability, efc. [1, 12 - 14]. Out of a
total of 315 new drugs approved by the FDA in the time period 2016-2022, 26
were peptide-based drugs. Additionally, there are approximately 200 peptides in
various stages of clinical development and 600 peptides undergoing preclinical
studies. The increasing acceptance of “peptides as drugs” is evident from the fact
that 5 peptides were approved by the FDA during 2023, which include Trofinetide
(Daybue™) that was approved for the treatment of a rare genetic disorder namely,
Rett syndrome [15]. This growing interest is reflected in the increasing number of
scientific publications and patents related to peptides, with notable reviews on the
subject [13, 14]. Currently, there are around 114 FDA-approved peptide-based
drugs available for therapeutic and diagnostic use in the market.

There are various strategies employed in the design and development process of
peptide-based drugs. The current chapter aims to delve into the computational
design of peptides, highlighting their potential in therapeutic and diagnostic
applications. The chapter begins with a brief history of peptide design and their
common applications followed by the methods and tools involved in their design.
We also briefly discuss the challenges involved in their design and highlight the
advantages such as high specificity, reduced off-target effects, and
biocompatibility, making them valuable tools in targeting complex diseases. The
chapter mainly focuses on methods involved in computational peptide design. It
covers the development of pharmacophores, virtual screening, peptide-specific
molecular docking and lead optimization strategies, MD simulations,
development of ML-based predictive models for peptide design, de novo peptide
design, and design of inhibitors for protein-protein interaction (PPI) complexes.
By presenting a comprehensive overview of computational peptide design
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methodologies, the chapter aims to demonstrate the power and versatility of
computational tools in modern drug discovery, offering potential strategies in the
development of therapeutic peptides and elucidating the application of
computational techniques in peptide drug development.

2. BRIEF HISTORY OF PEPTIDE BASED DRUG DEVELOPMENT

In the early 1920s, the first medicinal use of insulin for the treatment of Type 1
diabetes marked the beginning of the field of peptide-based therapeutics. Two
peptide hormones of the pituitary gland, namely, oxytocin and vasopressin were
first extracted and synthesized by Du Vigneaud who was awarded a Nobel Prize
in Chemistry for the same in 1955. While oxytocin is responsible for uterine
contraction and milk-secretion, vasopressin helps to reabsorb water from the
tubules in the nephrons. The synthesis was performed using the conventional
solution phase method which is quite challenging, especially for longer peptides
[16]. Afterward, with the seminal contribution of Merrifield in 1963 in the form of
a new approach to synthesizing peptides, namely “Solid-Phase peptide synthesis”,
the field of peptide-based drugs received a new impetus [17]. During the period of
1970-1980, also known as the golden age of small molecule pharmaceuticals
approximately ~20 new orally available drugs were approved per year. Though
the importance of peptides as key biological mediators grew due to their
selectivity, low toxicity, and potency, there were still certain limitations to the
development of peptide-based therapeutics owing to poor bioavailability, low
stability, short circulation time, and most importantly, lack of economically
feasible means for large scale manufacturing. This eventually led to stagnation in
peptide drug development. Only a few peptides such as human insulin produced
using recombinant DNA technology in 1982, synthetic gonadotropin-releasing
hormones namely, leuprolide (1985) and goserelin (1989) and synthetic
somatostatin- octreotide (1988) were approved as drugs. With the start of the 21*
century, increasing number of peptide drug approvals were granted by the FDA.
Few examples include enfuvirtide (Fuzeon or T20) a 36 amino acid membrane
fusion inhibitor for HIV-1 treatment approved in 2003, Ziconotide (25 mer) which
binds to N-type calcium channel used for the treatment of chronic pain approved
in 2004, etc. [18]. As many as six GLP-1 analogs such as exenatide, liraglutide,
lixisenatide, albiglutide, dulaglutide and semaglutide were approved between
2003 and 2017 for the treatment of Type 2 diabetes mellitus. The number of
peptides entering clinical trials doubled in 2000-2010 compared to the previous
decade [16]. Fig. (1) depicts the progress in the approval of peptide-based drugs
over the years.
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Abstract: Drug development is a critical endeavor within the pharmaceutical sector.
Integrating computational approaches has significantly reduced both the time and costs
associated with discovering new drugs. This chapter starts by highlighting the pivotal
role of multiscale molecular simulations in determining drug-binding sites on target
macromolecules and elucidating the mechanisms underlying drug actions. It then
delves into molecular dynamics (MD) simulation methods, focusing on drug design
strategies based on structure and ligand considerations. Additionally, the chapter
explores the development of advanced analysis tools and the integration of machine
learning techniques, which collectively enhance the efficiency of the drug discovery
process. Traditional MD analysis methods, such as root mean square deviation
(RMSD) of backbone atoms, root mean square fluctuation (RMSF), radius of gyration,
and interaction analyses, are extensively used to monitor structural changes and
convergence during simulations. Beyond these, newer trajectory mapping methods
offer intuitive and conclusive ways to visualize protein simulations by plotting the
protein's backbone movements as heat maps. Molecular dynamics simulations utilize
physical algorithms to model chemical systems and compute atomic and molecular
properties. In drug design and discovery, computational chemistry methods are
employed to predict mechanisms such as drug binding to targets and the chemical
properties of potential drug candidates. The combined use of traditional and novel
analysis methods is anticipated to have wide applications in deriving meaningful
insights from protein MD simulations across fields like structural biology,
biochemistry, and pharmaceutical research. The chapter concludes with several case
studies and success stories demonstrating the application of MD simulations as a
powerful computer-aided drug discovery tool in diabetes and Alzheimer's treatments.
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Highlighted examples include achievements in anticancer, antibacterial, anti-
leishmaniasis, and antiviral drug design, showcasing the impact of in silico drug design
in developing innovative therapies.

Keywords: Alzheimer's disease , Anticancer, Antimicrobial, Drug discovery, In
silico drug design, MD simulations.

INTRODUCTION

Molecular dynamics (MD) simulations are a computational method used to study
the physical movements of molecules and atoms over time. By solving Newton's
equations of motion for a system of particles, MD simulations provide detailed,
time-resolved information on the dynamical evolution of molecular systems. The
technique involves defining a potential energy function (or force field) that
represents the interactions between particles and then numerically integrating the
equations of motion to simulate trajectories [1].

MD simulations explore various phenomena in chemistry, biology, materials
science, and physics, such as protein folding, drug binding, phase transitions, and
transport properties. These simulations allow for the prediction of structural,
thermodynamic, and kinetic properties of molecular systems at the atomic scale,
often serving as a bridge between theoretical models and experimental
observations [2].

The accuracy of MD simulations largely depends on the quality of the force field
and the time scale over which the simulation is performed. The method is
computationally intensive but can be parallelized effectively, making it feasible
for large and complex systems with the aid of high-performance computing
resources [3].

Integrating molecular dynamics (MD) simulations with experimental techniques
like X-ray crystallography, cryo-electron microscopy (cryo-EM), and biophysical
assays, alongside computational methods such as quantum mechanical
calculations, virtual drug screening, and machine learning, offers powerful
insights into drug discovery [4]. However, challenges persist in reconciling
discrepancies between experimental data and MD results due to differences in
dynamic versus static representations of biomolecules. Data format
incompatibility and high computational costs further hinder seamless integration,
especially when scaling simulations or performing large-scale drug screenings [5].
To improve consistency, multiscale modeling, data fusion techniques, and
machine learning can be employed to enhance accuracy and streamline data
interpretation.  Additionally, standardizing data formats and fostering
interdisciplinary collaboration is critical to overcoming computational resource
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limitations and optimizing model validation. Addressing these challenges will
increase the efficiency and success rate of drug discovery by leveraging the
complementary strengths of MD simulations and experimental methodologies [6].

BASIC PRINCIPLES OF MD SIMULATIONS

The basic principles of MD simulations revolve around using classical mechanics
to model the behavior of atoms and molecules over time in specific systems to be
as actual as possible. Therefore, environments such as the setting of the system,
the type of ensemble, velocities of atoms, the numerical algorithm, the boundary
condition, and so on must be decided as requirements for the molecular dynamic
simulation. Here are the key concepts:

Force Field

The force field, or interatomic/intermolecular potential energy function, is a major
component of MD simulations. It describes the interactions between particles,
including bonded interactions (stretching bond and bending of angles) and non-
bonded interactions (electrostatic interactions and van der Waals forces) (Fig. 1)
[7, 8].

Force Field

/\

Bonded Interactions Non-bonded Interactions

o=0 )\"’; |§ e, @R rO_ @R
vdw

Electrostatistics
Bonds Angles

Fig. (1). Components of a force field represent bonded and non-bonded interactions in molecular simulations

[7].

The force acting on each particle is derived from the gradient of this potential
energy, which elucidates the correlation of the potential energy with the
coordinates of atoms. In drug discovery and design, non-reactive or classical force
fields are commonly used for host-guest MD simulations, which are commonly
used to simulate a wide range of small molecules or drugs with enzymes, proteins,
lipids, and polymers [9]. Briefly , Table 1 below discusses the five widely used
force fields: Amber [10], Chemistry at Harvard Macromolecular Mechanics
(CHARMM) [11, 12], Groningen Molecular Simulation (GROMOS) [13], all-
atom optimized potential for liquid simulations (OPLS-AA) [14, 15], and
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Abstract: The computational prediction of protein-ligand binding affinities has
become a key step in the successful virtual screening of compounds for drug
development and discovery. However, consistently accurate protein-ligand binding
affinity calculations are challenging in part due to, 1) the large protein/ligand
conformational space that must be sampled/searched, 2) the inconsistent accuracy of
classical molecular mechanics potentials, commonly used to compute binding
affinities, especially when n-stacking, halogen interaction, or metal centers are present,
or when polarization or charge transfer is significant. In this chapter, recent advances in
quantum mechanical methods that facilitate their application to protein-ligand binding
free energy calculations are discussed, with an emphasis on fragmentation methods and
their combination with conformational search algorithms. The accuracy of these new
approaches with respect to the prediction of protein-ligand binding free energy is
evaluated. New tools to improve workflow and speed up calculations are also
discussed.

Keywords: Ab initio quantum mechanics, Drug design, Entropy, Fragmentation
methods, Mining minima, Protein-ligand binding, QM-VM2, Solvation.

1. INTRODUCTION

The research and development of new drugs is an expensive and time-consuming
process. The estimated cost can routinely reach hundreds of millions of dollars
[1, 2], and the time spanned between the initial screening stages and launch of the
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drug can span over a decade [3]. In order to reduce both the time and monetary
costs, fast and accurate screening methods are essential in the early stages of the
process. The initial stages of the drug design process are discovery of hit
compounds [4], which involves the screening of large libraries of compounds
(high throughput screening) to identify those that are active towards the target,
followed by lead optimization, where the most promising hit compounds are
identified and refined into potential drug candidates by modifying their chemical
structure. In the latter stage, highly accurate predictions of the properties and
activities of the compounds would significantly speed up the development of drug
candidates subject to preclinical studies.

Virtual screening methods, known for their cost-effectiveness and time efficiency,
have become an essential part of these early stages of drug discovery [5 - 10]. By
computationally ranking compounds, these methods reduce (sometimes
significantly) the number of compounds requiring synthesis and subsequent
experimental validation (e.g., in vitro and in vivo biological assays). One of the
key variables that needs to be accurately computed during the lead optimization
procedure is the protein-ligand binding free energy, as it provides a quantitative
measure of how tightly a compound binds to a target site. While rapid advances in
computational power and algorithmic innovations have dramatically improved the
accessibility of free energy computations, challenges persist. Robust, high-
accuracy methods remain resource-intensive, which underscores a pressing need
for computational approaches that are efficient as well as accurate. A
comprehensive review of all computational approaches used to predict protein-
ligand binding free energies is beyond the scope of this chapter given the breadth
and complexity of the field, but the reader is referred to various reviews for a
survey of these methods [7, 10 - 26].

This chapter will explore the status of protein-ligand binding free energy
computations, highlighting the physics and statistical mechanics principles that
current methods are built upon, and how their accuracy can be improved by
introducing quantum mechanics (QM). Developments for the prediction of
absolute binding free energy (ABFE) methods, with a focus on end-point
methods, will be presented in Section 2. In Section 3, some of the persistent
challenges in the field are discussed, namely, accurate, but tractable, computation
of QM-based potential energy FE, adequate conformational sampling/search,
calculation of solute entropy, and accurate description of solvent effects. State-of-
the-art quantum mechanics-based methodologies designed to address these
challenges, with an emphasis on fragmentation methods, are described in Section
4. Section 5 will showcase developments of solute entropy calculations and
conformational search algorithms. Section 6 will briefly highlight some popular
MM and QM solvation models, including the treatment of explicit solvent
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molecules. In Section 7, the introduction of QM potentials in the VM2 mining
minima method [27] will be introduced, providing a significant step toward the
routine use of QM-based ABFE calculations for protein-ligand systems.

2. APPROACHES TO THE COMPUTATIONAL PREDICTION OF
PROTEIN-LIGAND BINDING FREE ENERGIES

Computational approaches for calculating protein-ligand binding free energy
broadly fall into two categories: 1) relative binding free energy (RBFE) methods,
which estimate differences in binding free energies between structurally related
ligands, and 2) absolute binding free energy (ABFE) methods, which directly
quantify the binding free energy of a ligand to its target. These two categories are
briefly discussed in Sections 2.1 and 2.2, respectively.

2.1. Protein-ligand Relative Binding Free Energy (RBFE) Methods (AAG,;,,)

RBFE approaches apply alchemical free energy methods that are built on a
thermodynamic cycle (Scheme 1), calculating the difference in binding free
energy between ligands (AAG,,,,). Therefore, one can rank a series of ligands
according to their relative binding free energy to the target. Commonly used
methods (and their variants) include free energy perturbation (FEP) [15, 17, 28 -
31], and thermodynamic integration (TI) [32, 33]. These methods are rigorously
based on statistical mechanics, and they enable the calculation of the free energy
differences between two states by gradually transforming one state into another.
This transformation is achieved by using a coupling parameter, A, which
interpolates between initial and final states. These unphysical intermediate A-
states enhance sampling overlap for convergence but require that a series of
molecular dynamics (MD) calculations be performed at each state for binding free
energy prediction. While these methods achieve satisfying agreement with
experiment in terms of ligand ranking [34] and have found practical use in
industry drug development programs [35, 36], they require the ligand series to be
structurally similar (common scaffold). They are also computationally expensive,
even though they use conventional classical force fields, due to the extensive
MD-based sampling required.
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Abstract: Inflammation is the body's response against an aggressive chemical,
physical, or biological agent . Despite being a natural response, if exaggerated , it can
damage the organism, making necessary pharmacology interventions. Several drugs
can control inflammation , such as COX inhibitors . However , there is a high incidence
of side effects. It is well-established that the assembly of NLRP3 triggers an
inflammatory response, leading to various diseases and highlighting its significance as
a therapeutic target. Discovering new drugs and potential targets is urgent to overcome
these limitations . Inflammasomes such as NLRP3 constituting the innate immune
responses, leading to the production of pro-inflammatory cytokines, such as IL-1f and
TNFa. Thus, targeting NLRP3 can provide a new anti-inflammatory drug that is safe
and free of the COX inhibitor's side effects. It is well-established that the assembly of
NLRP3 triggers an inflammatory response, leading to various diseases and highlighting
its significance as a therapeutic target. Among the methods used in the discovery of
new drugs, Computer-Aided Drug Desing (CADD) is widely used due to its numerous
advantages, such as less financial investment and time of discovery, being critical, the
ability to be used in any drug discovery campaign, including to search new anti-
inflammatory drugs targeting NLRP3. Finally, this review aims to present various
computational methods, both traditional and current, that facilitate the rational design
and discovery of new NLRP3 inflammasome inhibitors. This contributes to developing
innovative anti-inflammatory drugs that may be used in future clinical applications.
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INTRODUCTION

The inflammatory response and its vast array of components constitute one of the
most complex biological processes encountered in medicine , defined as an
adaptive response triggered by harmful events, including infection, tissue injury,
stress, and others [1, 2]. In this way, the inflammatory response constitutes a form
of defense of the body a ssociated with maladaptive or non-adaptive features that
are indissociable from the “healthy” phenomena and present themselves in novel
environmental conditions not initially present during the evolution of
inflammation [1, 3]. Although inflammation should ideally stay confined to
controlled responses, it is often dysregulated, and discerning pathological from
physiological inflammatory conditions is a considerable challenge. Inflammation
can be limited to an acute event or extend into chronic inflammation, a state
responsible for many autoimmune conditions and cardiovascular and metabolic
diseases [1, 4].

To recognize potential threats, cells constantly survey their environment using
sensors named pattern recognition receptors (PRRs), which are present in
complex multimeric protein complexes called inflammasomes. These
inflammasomes consist of the apoptosis-associated speck-like protein containing a
caspase recruitment domain (ASC) and a C-terminal caspase recruitment domain
(CARD). Belonging to these sensor receptor proteins, there is a class of proteins
called nucleotide-binding domain leucine-rich repeat-containing receptors
(NLRs), and the most extensively studied inflammasome contains the nucleotide-
binding domain leucine-rich repeat-containing protein 3 (NLRP3), thus being
titled the NLRP3 inflammasome [5 - 7].

When the inflammasome is activated by either of its canonical or non-canonical
pathways, all three pieces are assembled through protein-protein interactions, and
the activated caspase cleaves pro-interleukins into their active forms, specifically
producing IL-1p and IL-18. Pyroptosis, a specific form of programmed cell death
in inflammation, may occasionally be triggered by NLRP3, as it is one of many
inflammasomes whose caspase-1 module can set off Gasdermin D, which, in turn,
opens pores in a cell’s lipid bilayer. Nevertheless, Gasdermin D is not reliant on
NLRP3 activity and may also trigger this inflammasome through a non-canonical
activation pathway caused by lipopolysaccharides from Gram-negative bacteria
entering the cell [5, 8 - 10].

The NLRP3 inflammasome is involved in several different pathological
processes. During acute or chronic kidney injuries caused by unilateral ureteral
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obstruction, NLRP3 may be involved in cell death [11]. In diabetic
cardiomyopathy, NLRP3 expression is induced by high glucose levels , and its’
caspase-1 activation causes pyroptosis in myocardial cells [12]. In atherosclerosis,
NLRP3 exhibits increased expression in the aorta, plaques, and mononuclear cells
while being identified as responsible for the increased production of IL-18, a
proatherogenic cytokine [13 - 15]. In rheumatoid arthritis, NLRP3 is highly
expressed and activated in affected joint tissues. At the same time, pyroptosis and
overproduction of inflammatory cytokines triggered by this inflammasome may
be involved in disease occurrence and progression [16].

NLRP3 is also present in aging-related effects due to inflammatory and metabolic
alterations that feed into a cycle of redundant signaling between NF-kB-mediated
transcription of NLRP3 activated by IL-1-family cytokines since NLRP3
activation heightens the expression of IL-1f3 and IL-18; this feeds back into NF-
kB signaling [17]. Changes in circadian rhythm during aging negatively affect
melatonin secretion, occasionally generating several pro-inflammatory effects,
which may include NLRP3 inflammasome activation [18]. Disproportionate
activation of the NLRP3 inflammasome activation is also involved in tumor
pathogenesis. For instance, in breast cancer, IL-1B production provided by
NLRP3 activation promoted tumor growth and metastasis. Paradoxically,
however, NLRP3 activity simultaneously exhibits anti-tumorigenic effects. In
colorectal or colitis-associated cancer, its activity inhibits metastatic growth,
while its inhibition results in tumor proliferation and worse disease outcomes [13,
19].

Concerning gout arthritis, NLRP3 activation is caused by monosodium urate
crystals deposited in joints , and increased IL-1B concentrations result in
neutrophil infiltration, articular swelling, and pain [20]. NLRP3 dysfunction also
plays an essential role in endometriosis, as inflammatory microenvironments
promoted by NLRP3 activity in endometrial tissue may contribute to lesions
becoming more frequent and severe. Polycystic ovarian syndrome pathogenesis is
also affected by NLRP3 due to NF-«xB signaling and increased IL-18 expression,
potentially aggravating the disease and exacerbating infertility symptoms [21].

In Alzheimer’s disease, NLRP3 plays a crucial role as its activation caused by
amyloid plaque formation precedes tau pathology, inducing hyperphosphorylation
and aggregation of tau proteins in an IL-1B-triggered cascade [22]. Meanwhile, in
Parkinson’s disease, NLRP3 abnormal activation promoted by the previously
mentioned circadian dysfunction may intensify dopaminergic neuron (DA)
destruction. As aggregated a-synuclein is recognized by NLRP3 as one of the
damage-associated molecular patterns, caspase-1 activation may fracture o-
synuclein further, which, in turn, activates other inflammasomes, propagating a
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CHAPTER 7
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Abstract: Information of the electronic structure origin of the photophysical properties
is of paramount importance to understand the intricate physical/chemical
transformations a molecule undergoes in the process of light absorption. Moreover,
experimental analysis of excited states involved in the photophysical phenomenon is
often difficult for their transiency, and hence quantum chemical information of the
excited state emerges as the only tool for an in-depth understanding of the
photoexcitation mechanism. Exploration of the ground (S,) and excited electronic states
of molecules and subsequent estimation of absorption/emission wavelength need
rigorous standardization of computational methodology. Hence, the chapter offers a
general description of the state-of-the-art methodologies to explore the photophysical
properties of the molecules, which are promising candidates for important applications.
This bridging would ultimately aid in understanding the complex excited state
phenomena occurring in different materials with much clarity fostering their
development in varied verticals like medicine, biotechnology, energy, etc. Fluorescent
active molecules and their subsequent structure-activity correlation would be the prime
focus of the present piece thus rendering a suitable explanation of their excited state
properties through theoretical modelling and explanation at the level of electronic
structure. Application of the standardized methodology on a few chosen molecules of
probable industrial importance such as the smallest known Green Fluorescent Protein
(GFP), 3-hydroxy-4-pyridine carboxaldehyde (HINA), 2-hydroxy-3-naphthaldehyde
semicarbazone (2H3NS), efc. would provide ample scope to validate the computational
data through comparison with the already available experimental dataset. The
theoretical interpretations of photo-responsiveness of future industrially important
molecules through standardized computational methodology are likely to be a colossal
accrue of the current book chapter.
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INTRODUCTION

Absorption of light by photoactive molecules is an important physical
phenomenon with paramount applications. The photo-excited state can engage in
diverse de-activation processes to return to the ground electronic state (S,) without
altering the chemical identity of the molecules in certain instances giving rise to
photophysical processes [1]. Vibrational relaxation (VR) occurs when a molecule
returns from a higher to a lower vibrational state through non-radiative pathways
[2, 3]. In non-radiative VR, excess energy from the excited electron is transferred
to vibrational modes as kinetic energy, which is then dissipated as heat through
collisions. This process happens rapidly after photon absorption. Radiative
deactivation involves the release of excess energy as radiation (visible or UV)
when the molecule returns to a lower electronic state [4, 5]. Whether this is
classified as fluorescence or phosphorescence depends on the spin multiplicity of
the electronic states [6, 7]. Application of the photophysical properties needs a
priori understanding of the mechanism, which can be partly obtained from the
experiment. However, the transiency of the excited states involved in the
photophysical process necessitates theoretical investigation of the photoexcitation
event and subsequent correlation between theoretical findings and experimental
data [8 - 11]. Several research groups are focused on conjoint works of explaining
such experimental observations through theoretical computations. In a recent
work, Insuasty ef al. [12] clearly demonstrated intramolecular and twisted
intramolecular charge transfer (ICT/TICT) in three unsymmetrical 7-
(diethylamino)quinolone chalcones experimentally and corroborated the results
deploying density functional theory (DFT). A similar correlation of experimental
results with theoretical calculations was also reported by Ganai et al., Khopkar et
al., Wazzan et al., and others [13 - 15]. Experimental limitations arise when
studying transient species with untraceable geometrical configurations during
formation. Additionally, molecules often undergo changes in varying conditions
during photophysical transformations that cannot be stepwise monitored
experimentally. Thus, theoretical modelling becomes essential for understanding
reaction dynamics. Quantum chemical computations, providing potential energy
curves/surfaces (PEC/PES), can explain absorption and emission bands [16, 17].
Combining computational simulations with experiments helps visualize the
complex mechanisms of photophysical processes. This chapter will mainly
emphasize the applicability and significance of computational modelling in
understanding the photophysical processes through a discussion of the basic
computational methodologies and illustrations.
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A radiative transition occurs between two states that have identical spin
multiplicity better termed ‘fluorescence’. The emission is characterized by a rate
constant, k, and singlet state lifetime, 7 (~107 — 10" s) [18]. Alternatively,
phosphorescence is the transition from the first excited triplet state to the lowest
vibrational level of the ground state. The lifetime of an excited triplet state is
generally longer 7 (~10° — 10 s) than that in fluorescence especially due to the
spin forbidden character of transition [7]. However, the process of delayed
fluorescence may result from reverse inter-system crossing (rISC) after the triplet
population, which shows thermal dependence. This process is generally known as
thermally activated delayed fluorescence (TADF) [8 - 11].

The natural radiative lifetime, 7,, is explained as the reciprocal of the radiative
transition probability. The rate constant for fluorescence emission, k, in the
absence of any deactivating perturbations, is inversely related to the natural
radiative lifetime, 7,, of the molecule, and it is given by Eq. (1).

1 1
k = =
"oy 7! @)

Similarly, in the case of phosphorescence, the intrinsic lifetime of triplet state (T,)
7/, is the reciprocal of the rate constant for phosphorescence emission, k,. In the
radiative processes, usually, the emission takes place from the lowest excited state
to the ground state of a specific multiplicity (S,), which is known as Kasha'’s rule
[6, 7, 11]. However, violation of this rule has been observed in fluorescent
compounds like azulene, thiocarbonyl, dicarbonyl compounds like benzil, anthril,
naphthil, efc., and hydroxy flavones, etc. A similar violation of Kasha’s rule is
also observed in the T, — S, (n>1) transition in the phosphorescence of
fluoranthene and ferrocene [18, 19].

The non-radiative transition between the electronic states is a form of electronic
relaxation in which the energy is transferred to molecules that collide with the
excited molecule and release some of this energy through translational, rotational,
or vibrational motion. A radiation-less internal conversion (IC) refers to the
transition between states that have identical spin multiplicity and the nonradiative
transfer from the singlet to the triplet electronic states or vice-versa is called
intersystem crossing (ISC) [20]. Internal conversion occurs most readily at the
intersection point of the two molecular potential energy curves, where the nuclear
geometries of the two states are identical [21]. Internal conversion or vibrational
relaxation involving S, ~wa— S | transition within singlet states S, and S, | usually
occurs rapidly (k,.=10" s') when n>1. The S wws S_, (n>1) transition is more
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