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PREFACE

Computational  Chemistry  continues  to  play  a  transformative  role  in  modern  scientific
research, integrating diverse computational strategies to address challenges in drug discovery,
materials  design,  and  molecular-level  understanding  of  complex  biological  systems.  The
Frontiers in Computational Chemistry series aims to provide a platform for the dissemination
of  cutting-edge  research  and  applications  of  computational  techniques  in  chemistry  and
biology. This includes advancements in computer-aided drug design, quantum and molecular
simulations, peptide modeling, and the development of novel computational algorithms that
contribute to the efficient exploration of chemical and biological phenomena.

In this eighth volume, we present seven chapters that collectively highlight the latest progress
and methodological innovations across different domains of computational chemistry—from
broad overviews of computer-aided drug discovery to specialized approaches using quantum
mechanical and molecular dynamics simulations.

Chapter  1,  “Advancements  in  Computer-Aided  Drug  Discovery  and  Development:  A
Comprehensive Overview,” provides an integrated understanding of the computational tools
and  strategies  used  in  modern  drug  discovery.  It  emphasizes  the  pivotal  role  of  artificial
intelligence and machine learning in streamlining target identification, virtual screening, and
lead optimization.

Chapter  2,  “Recent  Advances  in  In-Silico  Drug  Repurposing:  Leveraging  Computational
Tools  for  Enhanced  Therapeutic  Discovery,”  discusses  how  computational  modeling,
network pharmacology,  and data-driven approaches are revolutionizing the repurposing of
existing  drugs  for  new therapeutic  indications,  significantly  reducing  time  and  cost  in  the
development pipeline.

Chapter  3,  “Computational  Design  of  Therapeutic  Peptides,”  explores  the  growing
importance of peptide-based drugs, focusing on computational methods for peptide design,
optimization,  and  molecular  simulation.  It  highlights  how  computational  strategies  help
overcome  challenges  of  stability,  delivery,  and  bioavailability  in  peptide  therapeutics.

Chapter  4,  “Advancing  Drug  Discovery  through  Molecular  Dynamics  Simulations:  A
Comprehensive Approach,” demonstrates how molecular dynamics simulations serve as an
essential  bridge  between  static  molecular  structures  and  dynamic  biological  function.  The
chapter  presents  applications  of  MD  in  understanding  conformational  flexibility,  binding
mechanisms, and drug stability.

Chapter  5,  “Advances  in  Quantum Mechanical  Methods  for  the  Computation  of  Protein-
Ligand  Binding  Free  Energy,”  delves  into  the  recent  progress  in  quantum  chemical
techniques, emphasizing accurate modeling of binding energetics and electronic interactions.
The discussion provides valuable insight into hybrid and fragmentation-based approaches that
enhance prediction reliability.

Chapter 6, “Current Trends in Computational Methods to Discover New Anti-inflammatory
Agents  Targeting  NLRP3  Complex,”  focuses  on  the  computational  exploration  of
inflammasome biology and presents novel approaches for identifying NLRP3 inhibitors using
structure-based drug design and molecular modeling strategies.
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Chapter 7, “Computational Modelling of Photophysical Processes,” broadens the scope of
this volume by addressing photophysical and photochemical properties of molecules through
quantum chemical simulations. This chapter highlights how computational modeling aids in
the understanding of excited-state processes relevant to biotechnology, medicine, and energy
materials.

We  hope  that  this  volume  serves  as  a  valuable  contribution  to  the  growing  body  of
computational  chemistry  literature  and  provides  readers  with  both  conceptual  clarity  and
practical insights into current research trends. Together, these chapters reinforce the pivotal
role  of  computational  methods  in  driving  innovation  across  molecular  sciences  and
pharmaceutical  research.

Zaheer Ul-Haq
Dr. Panjwani Center for Molecular Medicine and Drug Research

International Center for Chemical and Biological Sciences
University of Karachi

Karachi
Pakistan

&

Angela K. Wilson
Department of Chemistry

Michigan State University
USA
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CHAPTER 1

Advancements in Computer-Aided Drug Discovery
and Development: A Comprehensive Overview
Harshkumar Brahmbhatt1,*, Rahul Trivedi1, Priyanka Soni2 and Vishal Soni2

1 Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Vadodara, Gujarat,
India
2  B.  R.  Nahata  College  of  Pharmacy,  Faculty  of  Pharmacy,  Mandsaur  University,  Mandsaur,
Madhya Pradesh, India

Abstract: Computer-aided drug discovery and development (CADD) has emerged as a
transformative approach in the pharmaceutical industry, revolutionizing the traditional
drug  development  process.  This  abstract  provides  a  comprehensive  overview of  the
latest  advancements,  methodologies,  and  applications  in  CADD.  The  first  section
outlines  the  fundamental  principles  of  CADD,  emphasizing  its  integration  of
computational techniques, algorithms, and databases to expedite the identification of
potential  drug  candidates.  Molecular  modeling,  virtual  screening,  and  quantitative
structure-activity relationship (QSAR) analysis are highlighted as primary techniques
used  to  predict  ligand-target  interactions  and  optimize  drug  properties.  The  second
section discusses the role of machine learning (ML) and artificial intelligence (AI) in
CADD,  showcasing  their  capability  to  analyze  vast  datasets,  identify  patterns,  and
predict novel drug-target interactions with unparalleled accuracy. ML algorithms, such
as  deep  learning,  have  shown  promising  results  in  de  novo  drug  design,  target
identification, and toxicity prediction. In the third section, the application of CADD in
various stages of drug discovery and development is explored. From hit identification
and lead optimization to  pharmacokinetic/pharmacodynamic (PK/PD) modeling and
clinical trial design, CADD tools streamline decision-making processes, reduce costs,
and  accelerate  the  development  timeline.  Furthermore,  this  chapter  addresses  the
challenges  and  future  prospects  of  CADD.  Despite  its  remarkable  achievements,
CADD still faces limitations, such as the accurate representation of biological systems
and  the  integration  of  multi-scale  modeling  approaches.  Additionally,  ethical
considerations  regarding  data  privacy,  intellectual  property  rights,  and  regulatory
compliance  remain  pivotal  in  the  widespread  adoption  of  CADD  methodologies.

Keywords: CADD, QSAR, Virtual screening.
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INTRODUCTION

The landscape  of  drug  discovery  and development  has  experienced  a  profound
transformation  with  the  advent  of  computer-aided  drug  discovery  and
development  (CADD).  Traditionally,  the  drug  discovery  process  was  arduous,
expensive, and time-consuming, often taking over a decade and billions of dollars
to  bring  a  new  drug  to  market.  However,  the  integration  of  computational
techniques has revolutionized this paradigm, making the process more efficient,
cost-effective, and accurate. This chapter provides a comprehensive overview of
the latest advancements, methodologies, and applications in CADD, highlighting
its pivotal role in modern pharmaceutical research [1, 2].

FUNDAMENTAL PRINCIPLES OF CADD

CADD  employs  a  wide  array  of  computational  techniques,  algorithms,  and
databases to expedite and enhance the drug discovery process. At its core, CADD
aims to predict ligand-target interactions, optimize drug properties, and streamline
the decision-making process in drug development. The fundamental principles of
CADD can be categorized into several key methodologies: molecular modeling,
virtual screening, and quantitative structure-activity relationship (QSAR) analysis
[3].

MOLECULAR MODELING

Molecular  modeling  involves  the  use  of  computational  techniques  to  model  or
mimic the behavior of molecules. It includes methods such as molecular dynamics
(MD) simulations, which explore the physical movements of atoms and molecules
over time, and quantum mechanics/molecular mechanics (QM/MM) approaches,
which  provide  detailed  insights  into  molecular  interactions  at  quantum  levels.
These  techniques  allow  researchers  to  predict  the  structural  and  functional
properties  of  drug  candidates,  facilitating  the  identification  of  promising
compounds  [4].

VIRTUAL SCREENING

Virtual screening (VS) is a computational process used to search large libraries of
compounds to identify those that are most likely to bind to a drug target, usually a
protein receptor. There are two main types of virtual screening: ligand-based and
structure-based.  Ligand-based  virtual  screening  relies  on  known  active
compounds to predict the activity of new molecules, while structure-based virtual
screening  uses  the  three-dimensional  structure  of  the  target  protein  to  identify
potential ligands. These methods significantly reduce the  number  of  compounds
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that  need  to  be  tested  experimentally,  thereby  accelerating  the  drug  discovery
process [5, 6].

QUANTITATIVE  STRUCTURE-ACTIVITY  RELATIONSHIP  (QSAR)
ANALYSIS

QSAR analysis involves the development of mathematical models to predict the
biological activity of compounds based on their chemical structure. By correlating
chemical structure with pharmacological activity, QSAR models can predict the
efficacy and toxicity of new compounds. This method is invaluable in optimizing
drug  candidates,  ensuring  that  only  the  most  promising  compounds  progress
through  the  development  pipeline  [7].

Model Development: QSAR models can be developed using various statistical●

and  machine  learning  techniques.  Common  approaches  include  linear
regression,  decision  trees,  and  neural  networks.  The  choice  of  model  often
depends  on  the  complexity  of  the  data  and  the  specific  application.
Descriptors:  To  correlate  chemical  structure  with  biological  activity,  QSAR●

analysis  uses  molecular  descriptors,  which  are  numerical  values  representing
different properties of a compound. These can include topological, electronic,
steric, and hydrophobic descriptors.
Validation:  A  crucial  part  of  developing  QSAR  models  is  validation,  which●

ensures that the model can reliably predict  the activity of unseen compounds.
This  is  typically  done  using  techniques  like  cross-validation  and  external
validation  with  independent  test  sets.
Applications: QSAR analysis is not limited to predicting efficacy and toxicity.●

It  can  also  be  employed  in  environmental  chemistry  to  predict  the  fate  and
transport of chemicals, in toxicology to assess potential hazards, and in materials
science for designing new materials with specific properties.
Regulatory  Acceptance:  Regulatory  agencies,  such  as  the  FDA  and  EPA,●

increasingly  recognize  the  value  of  QSAR  models  in  risk  assessment  and
regulatory  decision-making.  However,  these  models  must  be  rigorously
validated  to  ensure  their  reliability  in  predicting  real-world  outcomes  [8,  9].

HIGH-THROUGHPUT SCREENING (HTS)

High-Throughput  Screening  (HTS)  is  a  powerful  technique  used  in  drug
discovery that enables the rapid testing of thousands to millions of compounds for
their biological activity against specific targets. The method automates the process
of  compound  testing,  allowing  researchers  to  quickly  identify  potential  drug
candidates  from  vast  chemical  libraries.  HTS  can  be  employed  to  identify
compounds that interact with multiple targets, leading to a better understanding of
complex diseases [10].
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CHAPTER 2

Recent  Advances  in  In-Silico  Drug  Repurposing:
Leveraging  Computational  Tools  for  Enhanced
Therapeutic  Discovery
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Abstract:  Drug  repurposing,  or  repositioning,  is  a  key  strategy  in  biomedical
innovation, leveraging existing approved drugs for new therapeutic uses. This approach
significantly cuts development costs and shortens the lengthy traditional drug approval
timelines.  This  approach  is  especially  valuable  for  rare  diseases,  addressing  unmet
needs by overcoming the high costs and challenges of developing new treatments. Drug
repurposing optimises drug utility and strategically allocates limited research resources.
In silico techniques have unlocked extraordinary opportunities in this domain, offering
a  pathway  to  identify  and  validate  new  therapeutic  indications.  This  can  expand
treatment options and greatly improve the precision of targeted therapies. The field of
drug development has undergone an enormous shift with the introduction of in silico
techniques.  Advanced  computational  techniques,  such  as  artificial  intelligence  (AI),
machine  learning  (ML),  and  chemo-informatics,  have  driven  a  paradigm  shift  in
identifying  and  developing  new  drug  applications.  These  technologies  use  vast
databases  and  advanced  bioinformatics  to  uncover  elusive  drug-target  interactions.
Tools like Reactome and the Kyoto Encyclopaedia of Genes and Genomes (KEGG)
have proven to unravel the complex interactions governing drug efficacy. The focus on
a holistic approach, integrating diverse sets of biological, clinical, and epidemiological
data,  has  been  instrumental  in  opening  new  avenues  for  repurposing  opportunities.
Success stories highlight the impact of in silico drug repurposing, showcasing its role
in meeting unmet medical needs and transforming therapeutic development. While in
silico drug repurposing prospects are undeniably promising, the field is not without its
challenges.  The  conclusion  explores  current  challenges  and  potential  solutions,
highlighting  how  innovative  computational  approaches  can  revolutionise  drug
development, enhancing efficiency, cost-effectiveness, and speed. The ultimate aim is
to  advance  personalised  medicine  and  improve  patient  care  with  unprecedented
precision.
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INTRODUCTION

Definition of Drug Repurposing

Sir  James  Black,  the  1998  Nobel  Prize  in  Physiology  and  Medicine  Laureate,
famously stated,  “The most  fruitful  basis  for  the  discovery of  a  new drug is  to
start with an old drug.” Drug repurposing leverages this principle to accelerate the
development of new treatments for various diseases and conditions. By bypassing
the traditional drug discovery process, which is often time-consuming and costly,
drug  repurposing  utilises  existing  knowledge  about  the  safety  and
pharmacokinetics of approved drugs [1]. Drug repurposing, also known as drug
repositioning, is the process of identifying new therapeutic uses for existing drugs
that were originally developed for a different indication [2]. The National Center
for  Advancing  Translational  Sciences  (NCATS)  in  the  USA  defines  drug
repurposing as “studying the drugs that are already approved to treat one disease
or condition to see if they are safe and effective for treating other diseases” [3].
This  definition  excludes  substances  that  have  not  yet  undergone  clinical
investigation,  specifically  those  held  in  chemical  libraries  by  academic  and
industry research groups for screening to identify new biological properties. Drug
repositioning excludes any structural modification of the drug. Instead, it utilises
the drug's existing biological properties for which it has already been approved,
potentially  with  a  different  formulation,  at  a  new  dose,  or  via  a  new  route  of
administration.  Alternatively,  it  can  exploit  the  side  properties  of  a  drug
responsible  for  its  adverse  effects  to  find  new  therapeutic  uses  [4].

Repurposing existing drugs offers numerous advantages. The safety, efficacy, and
toxicity  of  such  drugs  have  typically  been  extensively  studied,  providing
substantial  data to support gaining approval from regulatory bodies such as the
United States Food and Drug Administration (FDA) or the European Medicines
Agency (EMA) for new indications. The availability of this data offers hope to
patients with rare cancers for whom the development of new treatments would be
prohibitively  expensive.  Additionally,  repurposed  drugs  generally  receive
approval more quickly, within 3 to 12 years, and at a reduced cost of 50-60% [5].
This  expedited  process  and  cost  efficiency  make  drug  repurposing  a  highly
attractive  strategy  in  modern  pharmaceutical  development.

Strategic Advantage of Drug Repurposing

Drug  repurposing  is  increasingly  recognised  as  a  valuable  approach  within  the
pharmaceutical industry. Traditionally, pharmaceutical companies begin the R &
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D  (Research  &  Development)  process  by  targeting  a  specific  condition  and
focusing their  resources on modifying it  appropriately.  However,  the effects  of
pharmaceuticals  often  extend  beyond  their  initial  targets  due  to  their  ability  to
influence  various  biological  processes.  Pharmaceutical  compounds,  including
small  molecules  and  other  active  agents,  can  interact  with  multiple  genes,
proteins, and molecular pathways, thereby affecting the genotype and phenotype
of humans in both controlled and unforeseen ways. This inherent characteristic of
drugs creates opportunities to explore their potential for treating conditions other
than those for which they were originally developed.

Approximately  45%  of  drug  development  failures  are  attributed  to  safety  or
toxicity issues [6]. Addressing these safety concerns and potentially reducing the
average drug development time by 5-7 years makes drug repurposing an attractive
strategy.  This  approach  offers  significant  benefits  to  both  drug  developers  and
patients.  For  developers,  it  presents  a  more  cost-effective  and  less  time-
consuming  path  to  bringing  drugs  to  market.  For  patients,  it  ensures  quicker
access  to  treatments  with  well-documented  safety  profiles.  Pharmaceutical
companies possess core expertise in clinical development and are well-positioned
to  systematically  pursue  drug  repurposing.  Leveraging  partnerships  and
collaborations  can  enhance  their  chances  of  identifying  successful  repurposing
candidates. The recent surge in biomedical data, including genomic information
and big data from electronic medical records (EMRs), claims data, social media,
and  sensor  data,  has  created  a  critical  substrate  for  systematically  assessing
repurposing candidates. Advances in analytical methods further support this data-
driven  approach  [7].  The  accumulation  of  diverse  data  types  enables  a  holistic
understanding of drugs and diseases, facilitating effective repurposing strategies.
This data-driven methodology increases the productivity of  drug discovery and
aligns  with  the  industry's  mission  to  efficiently  bring  effective  treatments  to
patients.

Historical Milestones

Aspirin,  marketed  by  Bayer  in  1899  as  an  analgesic,  is  considered  the  oldest
example of drug repurposing. In the 1980s, researchers repurposed aspirin as an
antiplatelet  aggregation  drug  at  low  doses  [8].  Aspirin  is  now  used  to  prevent
heart  attacks  and  strokes  in  patients  with  cardiovascular  disease.  Aspirin  may
soon be repositioned for use in oncology. Studies have shown that daily aspirin
administration  for  at  least  five  years  can  prevent  the  development  of  various
cancers,  particularly  colorectal  cancer  [9].  Aspirin's  protective  effect  against
cancer  is  believed  to  result  from  COX-2  inhibition,  which  blocks  the  anti-
apoptotic effect of COX-2 on malignant cells and promotes their apoptotic death.
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CHAPTER 3

Computational Design of Therapeutic Peptides
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Abstract:  Peptides  have  emerged  as  promising  candidates  in  therapeutics  and
diagnostics due to their unique properties. They offer advantages over traditional small
molecule drugs, including high specificity, reduced off-target effects, biocompatibility,
and biodegradability. However, peptide-based therapeutics also present challenges of
low stability, delivery, synthesis, membrane permeability, and oral availability. Many
strategies such as cyclisation, incorporation of N- and C- terminal protecting groups,
and non-standard amino acid design of appropriate peptide delivery systems have been
adopted to mitigate these challenges. Computational techniques enable faster design
and development and reduce experimental costs involved in drug discovery and design
and  therefore,  have  gained  prominence  for  in-silico  testing  and  development  of
peptides.  This  chapter  explores  methods  involved  in  the  computational  design  of
therapeutic peptides, with significant attention to peptide-specific molecular docking
tools,  lead  optimization  strategies,  and  Molecular  Dynamics  (MD)  simulations.  We
also discuss the applicability of peptides in biomedicine and review specialized peptide
databases, exemplified by the case study of the PepEngine. A compendium of Machine
Learning (ML) tools used in peptide drug design highlights the latest advances in the
field.  Peptide-based  therapeutics  are  highly  promising  due  to  their  lower
bioaccumulation and toxicity along with high specificity. Many peptide-based drugs,
such as insulin, oxytocin, and enfuvirtide, have been widely accepted for therapeutic
applications.  By mitigating the challenges faced in  peptide design and aiding in  the
development of novel therapeutic peptides, computational approaches have played an
instrumental role in the peptide drug development process.

Keywords:  Computational  drug  design,  Computational  drug  development,
Computational peptide design, In-silico peptide analysis, Peptides, Peptide design,
Peptide docking, Peptide databases, Peptide stability, Peptide delivery.

1. INTRODUCTION

Peptides are small fragments of protein; they act as signaling entities in biological
systems and can be used  in  diverse  therapeutic  applications  as  well as  founda-
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tional  units  for  functional  biomaterials  [1].  Bioactive  peptides  with  specific
activities  can  be  designed  for  use  in  the  pharmaceutical  sector  and  therapeutic
biomedical  research.  Peptides  have  been  used  for  different  therapeutic
applications- some notable examples are exendin-4 and pramlintide for diabetes
[2, 3], enfuvirtide for the treatment of AIDS [4], bortezomib for the treatment of
myeloma  [5],  and  leuprolide  for  the  treatment  of  prostate  cancer  [6].  Peptide
hormones such as insulin, oxytocin, calcitonin, vasopressin, etc. are popular drugs
for  the  treatment  of  diabetes,  psychiatric  disorders,  osteoporosis,  and  diabetes
insipidus,  respectively  [7  -  11].  Cell-penetrating  peptides  have  lately  been
extensively used as carriers for  intracellular  delivery of cargo such as proteins,
nucleic acids, and therapeutic agents. Short peptides have also been reported to
form  nanospheres,  nanotubes  and  hydrogels  for  efficient  delivery  of  drugs.  In
comparison to small molecules, peptides possess increased potency, selectivity, a
broader range of targets, potentially lower toxicity, and lower accumulation rates
making  them favorable  for  therapeutic  applications.  There  are  however  certain
drawbacks to peptides such as low bioavailability,  inability to pass through the
cell membrane and blood-brain barrier, lower stability, etc. [1, 12 - 14]. Out of a
total of 315 new drugs approved by the FDA in the time period 2016-2022, 26
were peptide-based drugs. Additionally, there are approximately 200 peptides in
various stages of clinical  development and 600 peptides undergoing preclinical
studies. The increasing acceptance of “peptides as drugs” is evident from the fact
that 5 peptides were approved by the FDA during 2023, which include Trofinetide
(DaybueTM) that was approved for the treatment of a rare genetic disorder namely,
Rett syndrome [15]. This growing interest is reflected in the increasing number of
scientific publications and patents related to peptides, with notable reviews on the
subject  [13,  14].  Currently,  there  are  around  114  FDA-approved  peptide-based
drugs available for therapeutic and diagnostic use in the market.

There are various strategies employed in the design and development process of
peptide-based  drugs.  The  current  chapter  aims  to  delve  into  the  computational
design  of  peptides,  highlighting  their  potential  in  therapeutic  and  diagnostic
applications. The chapter begins with a brief history of peptide design and their
common applications followed by the methods and tools involved in their design.
We also briefly discuss the challenges involved in their design and highlight the
advantages  such  as  high  specificity,  reduced  off-target  effects,  and
biocompatibility, making them valuable tools in targeting complex diseases. The
chapter mainly focuses on methods involved in computational peptide design. It
covers  the  development  of  pharmacophores,  virtual  screening,  peptide-specific
molecular  docking  and  lead  optimization  strategies,  MD  simulations,
development of ML-based predictive models for peptide design, de novo peptide
design, and design of inhibitors for protein-protein interaction (PPI) complexes.
By  presenting  a  comprehensive  overview  of  computational  peptide  design
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methodologies,  the  chapter  aims  to  demonstrate  the  power  and  versatility  of
computational tools in modern drug discovery, offering potential strategies in the
development  of  therapeutic  peptides  and  elucidating  the  application  of
computational  techniques  in  peptide  drug  development.

2. BRIEF HISTORY OF PEPTIDE BASED DRUG DEVELOPMENT

In the early 1920s, the first medicinal use of insulin for the treatment of Type 1
diabetes  marked  the  beginning  of  the  field  of  peptide-based  therapeutics.  Two
peptide hormones of the pituitary gland, namely, oxytocin and vasopressin were
first extracted and synthesized by Du Vigneaud who was awarded a Nobel Prize
in  Chemistry  for  the  same  in  1955.  While  oxytocin  is  responsible  for  uterine
contraction  and  milk-secretion,  vasopressin  helps  to  reabsorb  water  from  the
tubules  in  the  nephrons.  The  synthesis  was  performed  using  the  conventional
solution phase method which is quite challenging, especially for longer peptides
[16]. Afterward, with the seminal contribution of Merrifield in 1963 in the form of
a new approach to synthesizing peptides, namely “Solid-Phase peptide synthesis”,
the field of peptide-based drugs received a new impetus [17]. During the period of
1970-1980,  also  known  as  the  golden  age  of  small  molecule  pharmaceuticals
approximately ~20 new orally available drugs were approved per year. Though
the  importance  of  peptides  as  key  biological  mediators  grew  due  to  their
selectivity,  low toxicity,  and  potency,  there  were  still  certain  limitations  to  the
development  of  peptide-based  therapeutics  owing  to  poor  bioavailability,  low
stability,  short  circulation  time,  and  most  importantly,  lack  of  economically
feasible means for large scale manufacturing. This eventually led to stagnation in
peptide drug development. Only a few peptides such as human insulin produced
using  recombinant  DNA  technology  in  1982,  synthetic  gonadotropin-releasing
hormones  namely,  leuprolide  (1985)  and  goserelin  (1989)  and  synthetic
somatostatin- octreotide (1988) were approved as drugs. With the start of the 21st

century, increasing number of peptide drug approvals were granted by the FDA.
Few examples include enfuvirtide (Fuzeon or  T20) a  36 amino acid membrane
fusion inhibitor for HIV-1 treatment approved in 2003, Ziconotide (25 mer) which
binds to N-type calcium channel used for the treatment of chronic pain approved
in 2004, etc. [18]. As many as six GLP-1 analogs such as exenatide, liraglutide,
lixisenatide,  albiglutide,  dulaglutide  and  semaglutide  were  approved  between
2003  and  2017  for  the  treatment  of  Type  2  diabetes  mellitus.  The  number  of
peptides entering clinical trials doubled in 2000-2010 compared to the previous
decade [16]. Fig. (1) depicts the progress in the approval of peptide-based drugs
over the years.
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Abstract: Drug development is a critical endeavor within the pharmaceutical sector.
Integrating computational approaches has significantly reduced both the time and costs
associated with discovering new drugs. This chapter starts by highlighting the pivotal
role of multiscale molecular simulations in determining drug-binding sites on target
macromolecules  and  elucidating  the  mechanisms  underlying  drug  actions.  It  then
delves  into molecular  dynamics (MD) simulation methods,  focusing on drug design
strategies  based  on  structure  and  ligand  considerations.  Additionally,  the  chapter
explores the development of advanced analysis tools and the integration of machine
learning techniques, which collectively enhance the efficiency of the drug discovery
process.  Traditional  MD  analysis  methods,  such  as  root  mean  square  deviation
(RMSD) of backbone atoms, root mean square fluctuation (RMSF), radius of gyration,
and  interaction  analyses,  are  extensively  used  to  monitor  structural  changes  and
convergence  during  simulations.  Beyond  these,  newer  trajectory  mapping  methods
offer  intuitive  and  conclusive  ways  to  visualize  protein  simulations  by  plotting  the
protein's backbone movements as heat maps. Molecular dynamics simulations utilize
physical  algorithms  to  model  chemical  systems  and  compute  atomic  and  molecular
properties.  In  drug  design  and  discovery,  computational  chemistry  methods  are
employed  to  predict  mechanisms  such  as  drug  binding  to  targets  and  the  chemical
properties  of  potential  drug  candidates.  The  combined  use  of  traditional  and  novel
analysis  methods  is  anticipated  to  have  wide  applications  in  deriving  meaningful
insights  from  protein  MD  simulations  across  fields  like  structural  biology,
biochemistry, and pharmaceutical research. The chapter concludes with several case
studies  and  success  stories  demonstrating  the  application  of  MD  simulations  as  a
powerful computer-aided drug discovery tool in diabetes and Alzheimer's treatments.
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Highlighted  examples  include  achievements  in  anticancer,  antibacterial,  anti-
leishmaniasis, and antiviral drug design, showcasing the impact of in silico drug design
in developing innovative therapies.

Keywords: Alzheimer's disease , Anticancer, Antimicrobial, Drug discovery, In
silico drug design, MD simulations.

INTRODUCTION

Molecular dynamics (MD) simulations are a computational method used to study
the physical movements of molecules and atoms over time. By solving Newton's
equations of motion for a system of particles, MD simulations provide detailed,
time-resolved information on the dynamical evolution of molecular systems. The
technique  involves  defining  a  potential  energy  function  (or  force  field)  that
represents the interactions between particles and then numerically integrating the
equations of motion to simulate trajectories [1].

MD  simulations  explore  various  phenomena  in  chemistry,  biology,  materials
science, and physics, such as protein folding, drug binding, phase transitions, and
transport  properties.  These  simulations  allow  for  the  prediction  of  structural,
thermodynamic, and kinetic properties of molecular systems at the atomic scale,
often  serving  as  a  bridge  between  theoretical  models  and  experimental
observations  [2].

The accuracy of MD simulations largely depends on the quality of the force field
and  the  time  scale  over  which  the  simulation  is  performed.  The  method  is
computationally intensive but can be parallelized effectively, making it feasible
for  large  and  complex  systems  with  the  aid  of  high-performance  computing
resources  [3].

Integrating molecular dynamics (MD) simulations with experimental techniques
like X-ray crystallography, cryo-electron microscopy (cryo-EM), and biophysical
assays,  alongside  computational  methods  such  as  quantum  mechanical
calculations,  virtual  drug  screening,  and  machine  learning,  offers  powerful
insights  into  drug  discovery  [4].  However,  challenges  persist  in  reconciling
discrepancies  between  experimental  data  and  MD  results  due  to  differences  in
dynamic  versus  static  representations  of  biomolecules.  Data  format
incompatibility and high computational costs further hinder seamless integration,
especially when scaling simulations or performing large-scale drug screenings [5].
To  improve  consistency,  multiscale  modeling,  data  fusion  techniques,  and
machine  learning  can  be  employed  to  enhance  accuracy  and  streamline  data
interpretation.  Additionally,  standardizing  data  formats  and  fostering
interdisciplinary  collaboration  is  critical  to  overcoming computational  resource
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limitations  and  optimizing  model  validation.  Addressing  these  challenges  will
increase  the  efficiency  and  success  rate  of  drug  discovery  by  leveraging  the
complementary strengths of MD simulations and experimental methodologies [6].

BASIC PRINCIPLES OF MD SIMULATIONS

The basic principles of MD simulations revolve around using classical mechanics
to model the behavior of atoms and molecules over time in specific systems to be
as actual as possible. Therefore, environments such as the setting of the system,
the type of ensemble, velocities of atoms, the numerical algorithm, the boundary
condition, and so on must be decided as requirements for the molecular dynamic
simulation. Here are the key concepts:

Force Field

The  force  acting  on  each  particle  is  derived  from the  gradient  of  this  potential
energy,  which  elucidates  the  correlation  of  the  potential  energy  with  the
coordinates of atoms. In drug discovery and design, non-reactive or classical force
fields are commonly used for host-guest MD simulations, which are commonly
used to simulate a wide range of small molecules or drugs with enzymes, proteins,
lipids, and polymers [9]. Briefly , Table 1 below discusses the five widely used
force  fields:  Amber  [10],  Chemistry  at  Harvard  Macromolecular  Mechanics
(CHARMM)  [11,  12],  Groningen  Molecular  Simulation  (GROMOS)  [13],  all-
atom  optimized  potential  for  liquid  simulations  (OPLS-AA)  [14,  15],  and

The force field, or interatomic/intermolecular potential energy function, is a major
component  of  MD  simulations.  It  describes  the  interactions  between  particles,
including bonded interactions (stretching bond and bending of angles) and non-
bonded interactions (electrostatic interactions and van der Waals forces) (Fig. 1)
[7, 8].

Fig. (1). Components of a force field represent bonded and non-bonded interactions in molecular simulations
[7].
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CHAPTER 5

Advances in Quantum Mechanical Methods for the
Computation  of  Protein-Ligand  Binding  Free
Energy
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Abstract:  The  computational  prediction  of  protein-ligand  binding  affinities  has
become  a  key  step  in  the  successful  virtual  screening  of  compounds  for  drug
development  and  discovery.  However,  consistently  accurate  protein-ligand  binding
affinity  calculations  are  challenging  in  part  due  to,  1)  the  large  protein/ligand
conformational space that must be sampled/searched, 2) the inconsistent accuracy of
classical  molecular  mechanics  potentials,  commonly  used  to  compute  binding
affinities, especially when π-stacking, halogen interaction, or metal centers are present,
or when polarization or charge transfer is significant. In this chapter, recent advances in
quantum mechanical methods that facilitate their application to protein-ligand binding
free energy calculations are discussed, with an emphasis on fragmentation methods and
their combination with conformational search algorithms. The accuracy of these new
approaches  with  respect  to  the  prediction  of  protein-ligand  binding  free  energy  is
evaluated.  New  tools  to  improve  workflow  and  speed  up  calculations  are  also
discussed.

Keywords: Ab initio quantum mechanics, Drug design, Entropy, Fragmentation
methods, Mining minima, Protein-ligand binding, QM-VM2, Solvation.

1. INTRODUCTION

The research and development of new drugs is an expensive and time-consuming
process. The estimated cost can routinely reach hundreds  of  millions  of  dollars
[1, 2], and the time spanned between the initial screening stages and launch of  the
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drug can span over a decade [3]. In order to reduce both the time and monetary
costs, fast and accurate screening methods are essential in the early stages of the
process.  The  initial  stages  of  the  drug  design  process  are  discovery  of  hit
compounds  [4],  which  involves  the  screening  of  large  libraries  of  compounds
(high throughput screening) to identify those that  are active towards the target,
followed  by  lead  optimization,  where  the  most  promising  hit  compounds  are
identified and refined into potential drug candidates by modifying their chemical
structure.  In  the  latter  stage,  highly  accurate  predictions  of  the  properties  and
activities of the compounds would significantly speed up the development of drug
candidates subject to preclinical studies.

Virtual screening methods, known for their cost-effectiveness and time efficiency,
have become an essential part of these early stages of drug discovery [5 - 10]. By
computationally  ranking  compounds,  these  methods  reduce  (sometimes
significantly)  the  number  of  compounds  requiring  synthesis  and  subsequent
experimental validation (e.g., in vitro and in vivo biological assays). One of the
key variables that needs to be accurately computed during the lead optimization
procedure is the protein-ligand binding free energy, as it provides a quantitative
measure of how tightly a compound binds to a target site. While rapid advances in
computational power and algorithmic innovations have dramatically improved the
accessibility  of  free  energy  computations,  challenges  persist.  Robust,  high-
accuracy methods remain resource-intensive, which underscores a pressing need
for  computational  approaches  that  are  efficient  as  well  as  accurate.  A
comprehensive review of all  computational  approaches used to predict  protein-
ligand binding free energies is beyond the scope of this chapter given the breadth
and  complexity  of  the  field,  but  the  reader  is  referred  to  various  reviews  for  a
survey of these methods [7, 10 - 26].

This  chapter  will  explore  the  status  of  protein-ligand  binding  free  energy
computations,  highlighting the physics  and statistical  mechanics  principles  that
current  methods  are  built  upon,  and  how  their  accuracy  can  be  improved  by
introducing  quantum  mechanics  (QM).  Developments  for  the  prediction  of
absolute  binding  free  energy  (ABFE)  methods,  with  a  focus  on  end-point
methods,  will  be  presented  in  Section  2.  In  Section  3,  some  of  the  persistent
challenges in the field are discussed, namely, accurate, but tractable, computation
of  QM-based  potential  energy  E,  adequate  conformational  sampling/search,
calculation of solute entropy, and accurate description of solvent effects. State-of-
the-art  quantum  mechanics-based  methodologies  designed  to  address  these
challenges, with an emphasis on fragmentation methods, are described in Section
4.  Section  5  will  showcase  developments  of  solute  entropy  calculations  and
conformational search algorithms. Section 6 will briefly highlight some popular
MM  and  QM  solvation  models,  including  the  treatment  of  explicit  solvent
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molecules.  In  Section 7,  the  introduction of  QM potentials  in  the  VM2 mining
minima method [27] will be introduced, providing a significant step toward the
routine use of QM-based ABFE calculations for protein-ligand systems.

2.  APPROACHES  TO  THE  COMPUTATIONAL  PREDICTION  OF
PROTEIN-LIGAND BINDING FREE ENERGIES

Computational  approaches  for  calculating  protein-ligand  binding  free  energy
broadly fall into two categories: 1) relative binding free energy (RBFE) methods,
which estimate differences in binding free energies between structurally related
ligands,  and  2)  absolute  binding  free  energy  (ABFE)  methods,  which  directly
quantify the binding free energy of a ligand to its target. These two categories are
briefly discussed in Sections 2.1 and 2.2, respectively.

2.1. Protein-ligand Relative Binding Free Energy (RBFE) Methods (∆∆Gbind)

RBFE  approaches  apply  alchemical  free  energy  methods  that  are  built  on  a
thermodynamic  cycle  (Scheme  1),  calculating  the  difference  in  binding  free
energy  between  ligands  (∆∆Gbind).  Therefore,  one  can  rank  a  series  of  ligands
according  to  their  relative  binding  free  energy  to  the  target.  Commonly  used
methods (and their variants) include free energy perturbation (FEP) [15, 17, 28 -
31], and thermodynamic integration (TI) [32, 33]. These methods are rigorously
based on statistical mechanics, and they enable the calculation of the free energy
differences between two states by gradually transforming one state into another.
This  transformation  is  achieved  by  using  a  coupling  parameter,  λ,  which
interpolates  between  initial  and  final  states.  These  unphysical  intermediate  λ-
states  enhance  sampling  overlap  for  convergence  but  require  that  a  series  of
molecular dynamics (MD) calculations be performed at each state for binding free
energy  prediction.  While  these  methods  achieve  satisfying  agreement  with
experiment  in  terms  of  ligand  ranking  [34]  and  have  found  practical  use  in
industry drug development programs [35, 36], they require the ligand series to be
structurally similar (common scaffold). They are also computationally expensive,
even  though  they  use  conventional  classical  force  fields,  due  to  the  extensive
MD-based sampling required.
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Abstract:   Inflammation  is  the  body's  response  against  an  aggressive  chemical,
physical, or biological agent . Despite being a natural response, if exaggerated , it can
damage the  organism,  making necessary  pharmacology interventions.  Several  drugs
can control inflammation , such as COX inhibitors . However , there is a high incidence
of  side  effects.  It  is  well-established  that  the  assembly  of  NLRP3  triggers  an
inflammatory response, leading to various diseases and highlighting its significance as
a therapeutic target. Discovering new drugs and potential targets is urgent to overcome
these  limitations  .  Inflammasomes  such  as  NLRP3  constituting  the  innate  immune
responses, leading to the production of pro-inflammatory cytokines, such as IL-1β and
TNFα. Thus, targeting NLRP3 can provide a new anti-inflammatory drug that is safe
and free of the COX inhibitor's side effects. It is well-established that the assembly of
NLRP3 triggers an inflammatory response, leading to various diseases and highlighting
its significance as a therapeutic target. Among the methods used in the discovery of
new drugs, Computer-Aided Drug Desing (CADD) is widely used due to its numerous
advantages, such as less financial investment and time of discovery, being critical, the
ability  to  be  used  in  any  drug  discovery  campaign,  including  to  search  new  anti-
inflammatory  drugs  targeting  NLRP3.  Finally,  this  review  aims  to  present  various
computational methods, both traditional and current, that facilitate the rational design
and discovery of new NLRP3 inflammasome inhibitors. This contributes to developing
innovative anti-inflammatory drugs that may be used in future clinical applications.
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INTRODUCTION

The inflammatory response and its vast array of components constitute one of the
most  complex  biological  processes  encountered  in  medicine  ,  defined  as  an
adaptive response triggered by harmful events, including infection, tissue injury,
stress, and others [1, 2]. In this way, the inflammatory response constitutes a form
of defense of the body a ssociated with maladaptive or non-adaptive features that
are indissociable from the “healthy” phenomena and present themselves in novel
environmental  conditions  not  initially  present  during  the  evolution  of
inflammation  [1,  3].  Although  inflammation  should  ideally  stay  confined  to
controlled responses,  it  is  often dysregulated,  and discerning pathological  from
physiological inflammatory conditions is a considerable challenge. Inflammation
can  be  limited  to  an  acute  event  or  extend  into  chronic  inflammation,  a  state
responsible for many autoimmune conditions and cardiovascular and metabolic
diseases [1, 4].

To  recognize  potential  threats,  cells  constantly  survey  their  environment  using
sensors  named  pattern  recognition  receptors  (PRRs),  which  are  present  in
complex  multimeric  protein  complexes  called  inflammasomes.  These
inflammasomes consist of the apoptosis-associated speck-like protein containing a
caspase recruitment domain (ASC) and a C-terminal caspase recruitment domain
(CARD). Belonging to these sensor receptor proteins, there is a class of proteins
called  nucleotide-binding  domain  leucine-rich  repeat-containing  receptors
(NLRs), and the most extensively studied inflammasome contains the nucleotide-
binding  domain  leucine-rich  repeat-containing  protein  3  (NLRP3),  thus  being
titled  the  NLRP3  inflammasome  [5  -  7].

When the inflammasome is activated by either of its canonical or non-canonical
pathways, all three pieces are assembled through protein-protein interactions, and
the activated caspase cleaves pro-interleukins into their active forms, specifically
producing IL-1β and IL-18. Pyroptosis, a specific form of programmed cell death
in inflammation, may occasionally be triggered by NLRP3, as it is one of many
inflammasomes whose caspase-1 module can set off Gasdermin D, which, in turn,
opens pores in a cell’s lipid bilayer. Nevertheless, Gasdermin D is not reliant on
NLRP3 activity and may also trigger this inflammasome through a non-canonical
activation pathway caused by lipopolysaccharides from Gram-negative bacteria
entering the cell [5, 8 - 10].

The  NLRP3  inflammasome  is  involved  in  several  different  pathological
processes. During acute or chronic kidney injuries caused by unilateral ureteral
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obstruction,  NLRP3  may  be  involved  in  cell  death  [11].  In  diabetic
cardiomyopathy, NLRP3 expression is induced by high glucose levels , and its’
caspase-1 activation causes pyroptosis in myocardial cells [12]. In atherosclerosis,
NLRP3 exhibits increased expression in the aorta, plaques, and mononuclear cells
while  being  identified  as  responsible  for  the  increased  production  of  IL-1β,  a
proatherogenic  cytokine  [13  -  15].  In  rheumatoid  arthritis,  NLRP3  is  highly
expressed and activated in affected joint tissues. At the same time, pyroptosis and
overproduction of inflammatory cytokines triggered by this inflammasome may
be involved in disease occurrence and progression [16].

NLRP3 is also present in aging-related effects due to inflammatory and metabolic
alterations that feed into a cycle of redundant signaling between NF-κB-mediated
transcription  of  NLRP3  activated  by  IL-1-family  cytokines  since  NLRP3
activation heightens the expression of IL-1β and IL-18; this feeds back into NF-
κB signaling  [17].  Changes  in  circadian  rhythm during  aging  negatively  affect
melatonin  secretion,  occasionally  generating  several  pro-inflammatory  effects,
which  may  include  NLRP3  inflammasome  activation  [18].  Disproportionate
activation  of  the  NLRP3  inflammasome  activation  is  also  involved  in  tumor
pathogenesis.  For  instance,  in  breast  cancer,  IL-1β  production  provided  by
NLRP3  activation  promoted  tumor  growth  and  metastasis.  Paradoxically,
however,  NLRP3  activity  simultaneously  exhibits  anti-tumorigenic  effects.  In
colorectal  or  colitis-associated  cancer,  its  activity  inhibits  metastatic  growth,
while its inhibition results in tumor proliferation and worse disease outcomes [13,
19] .

Concerning  gout  arthritis,  NLRP3  activation  is  caused  by  monosodium  urate
crystals  deposited  in  joints  ,  and  increased  IL-1β  concentrations  result  in
neutrophil infiltration, articular swelling, and pain [20]. NLRP3 dysfunction also
plays  an  essential  role  in  endometriosis,  as  inflammatory  microenvironments
promoted  by  NLRP3  activity  in  endometrial  tissue  may  contribute  to  lesions
becoming more frequent and severe. Polycystic ovarian syndrome pathogenesis is
also affected by NLRP3 due to NF-κB signaling and increased IL-18 expression,
potentially aggravating the disease and exacerbating infertility symptoms [21].

In  Alzheimer’s  disease,  NLRP3 plays  a  crucial  role  as  its  activation caused by
amyloid plaque formation precedes tau pathology, inducing hyperphosphorylation
and aggregation of tau proteins in an IL-1β-triggered cascade [22]. Meanwhile, in
Parkinson’s  disease,  NLRP3  abnormal  activation  promoted  by  the  previously
mentioned  circadian  dysfunction  may  intensify  dopaminergic  neuron  (DAN)
destruction.  As  aggregated  α-synuclein  is  recognized  by  NLRP3  as  one  of  the
damage-associated  molecular  patterns,  caspase-1  activation  may  fracture  α-
synuclein further, which, in turn, activates other inflammasomes, propagating a
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Abstract: Information of the electronic structure origin of the photophysical properties
is  of  paramount  importance  to  understand  the  intricate  physical/chemical
transformations  a  molecule  undergoes  in  the  process  of  light  absorption.  Moreover,
experimental analysis of excited states involved in the photophysical phenomenon is
often  difficult  for  their  transiency,  and  hence  quantum  chemical  information  of  the
excited  state  emerges  as  the  only  tool  for  an  in-depth  understanding  of  the
photoexcitation mechanism. Exploration of the ground (S0) and excited electronic states
of  molecules  and  subsequent  estimation  of  absorption/emission  wavelength  need
rigorous standardization of  computational  methodology.  Hence,  the  chapter  offers  a
general description of the state-of-the-art methodologies to explore the photophysical
properties of the molecules, which are promising candidates for important applications.
This  bridging  would  ultimately  aid  in  understanding  the  complex  excited  state
phenomena  occurring  in  different  materials  with  much  clarity  fostering  their
development in varied verticals like medicine, biotechnology, energy, etc. Fluorescent
active molecules and their subsequent structure-activity correlation would be the prime
focus of the present piece thus rendering a suitable explanation of their excited state
properties  through  theoretical  modelling  and  explanation  at  the  level  of  electronic
structure. Application of the standardized methodology on a few chosen molecules of
probable industrial importance such as the smallest known Green Fluorescent Protein
(GFP),  3-hydroxy-4-pyridine  carboxaldehyde  (HINA),  2-hydroxy-3-naphthaldehyde
semicarbazone (2H3NS), etc. would provide ample scope to validate the computational
data  through  comparison  with  the  already  available  experimental  dataset.  The
theoretical  interpretations  of  photo-responsiveness  of  future  industrially  important
molecules through standardized computational methodology are likely to be a colossal
accrue of the current book chapter.
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INTRODUCTION

Absorption  of  light  by  photoactive  molecules  is  an  important  physical
phenomenon with paramount applications. The photo-excited state can engage in
diverse de-activation processes to return to the ground electronic state (S0) without
altering the chemical identity of the molecules in certain instances giving rise to
photophysical processes [1]. Vibrational relaxation (VR) occurs when a molecule
returns from a higher to a lower vibrational state through non-radiative pathways
[2, 3]. In non-radiative VR, excess energy from the excited electron is transferred
to vibrational modes as kinetic energy, which is then dissipated as heat through
collisions.  This  process  happens  rapidly  after  photon  absorption.  Radiative
deactivation  involves  the  release  of  excess  energy  as  radiation  (visible  or  UV)
when  the  molecule  returns  to  a  lower  electronic  state  [4,  5].  Whether  this  is
classified as fluorescence or phosphorescence depends on the spin multiplicity of
the electronic states [6, 7]. Application of the photophysical properties needs  a
priori  understanding of  the  mechanism,  which  can  be  partly  obtained from the
experiment.  However,  the  transiency  of  the  excited  states  involved  in  the
photophysical process necessitates theoretical investigation of the photoexcitation
event and subsequent correlation between theoretical findings and experimental
data [8 - 11]. Several research groups are focused on conjoint works of explaining
such  experimental  observations  through  theoretical  computations.  In  a  recent
work,  Insuasty  et  al.  [12]  clearly  demonstrated  intramolecular  and  twisted
intramolecular  charge  transfer  (ICT/TICT)  in  three  unsymmetrical  7-
(diethylamino)quinolone  chalcones  experimentally  and  corroborated  the  results
deploying density functional theory (DFT). A similar correlation of experimental
results with theoretical calculations was also reported by Ganai et al., Khopkar et
al.,  Wazzan  et  al.,  and  others  [13  -  15].  Experimental  limitations  arise  when
studying  transient  species  with  untraceable  geometrical  configurations  during
formation. Additionally, molecules often undergo changes in varying conditions
during  photophysical  transformations  that  cannot  be  stepwise  monitored
experimentally. Thus, theoretical modelling becomes essential for understanding
reaction dynamics. Quantum chemical computations, providing potential energy
curves/surfaces (PEC/PES), can explain absorption and emission bands [16, 17].
Combining  computational  simulations  with  experiments  helps  visualize  the
complex  mechanisms  of  photophysical  processes.  This  chapter  will  mainly
emphasize  the  applicability  and  significance  of  computational  modelling  in
understanding  the  photophysical  processes  through  a  discussion  of  the  basic
computational  methodologies  and  illustrations.
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Overview of Photophysical Processes

A  radiative  transition  occurs  between  two  states  that  have  identical  spin
multiplicity better termed ‘fluorescence’. The emission is characterized by a rate
constant,  kf,  and  singlet  state  lifetime,   (~10-7  ―  10-10  s)  [18].  Alternatively,
phosphorescence is the transition from the first excited triplet state to the lowest
vibrational  level  of  the  ground  state.  The  lifetime  of  an  excited  triplet  state  is
generally longer  (~10-5 ― 10 s) than that in fluorescence especially due to the
spin  forbidden  character  of  transition  [7].  However,  the  process  of  delayed
fluorescence may result from reverse inter-system crossing (rISC) after the triplet
population, which shows thermal dependence. This process is generally known as
thermally activated delayed fluorescence (TADF) [8 - 11].

The natural  radiative lifetime,  τN,  is  explained as the reciprocal  of  the radiative
transition  probability.  The  rate  constant  for  fluorescence  emission,  kf,  in  the
absence  of  any  deactivating  perturbations,  is  inversely  related  to  the  natural
radiative  lifetime,  τN,  of  the  molecule,  and  it  is  given  by  Eq.  (1).

(1)

Similarly, in the case of phosphorescence, the intrinsic lifetime of triplet state (T1)
τP

0, is the reciprocal of the rate constant for phosphorescence emission, kp. In the
radiative processes, usually, the emission takes place from the lowest excited state
to the ground state of a specific multiplicity (S0), which is known as Kasha’s rule
[6,  7,  11].  However,  violation  of  this  rule  has  been  observed  in  fluorescent
compounds like azulene, thiocarbonyl, dicarbonyl compounds like benzil, anthril,
naphthil, etc., and hydroxy flavones, etc.  A similar violation of Kasha’s rule is
also  observed  in  the  Tn  →  S0  (n>1)  transition  in  the  phosphorescence  of
fluoranthene  and  ferrocene  [18,  19].

The non-radiative transition between the electronic states is a form of electronic
relaxation in  which the  energy is  transferred  to  molecules  that  collide  with  the
excited molecule and release some of this energy through translational, rotational,
or  vibrational  motion.  A  radiation-less  internal  conversion  (IC)  refers  to  the
transition between states that have identical spin multiplicity and the nonradiative
transfer  from  the  singlet  to  the  triplet  electronic  states  or  vice-versa  is  called
intersystem crossing  (ISC)  [20].  Internal  conversion  occurs  most  readily  at  the
intersection point of the two molecular potential energy curves, where the nuclear
geometries of the two states are identical [21]. Internal conversion or vibrational
relaxation involving Sn  Sn-1 transition within singlet states Sn and Sn-1 usually
occurs rapidly (kIC≈1012  s-1) when n>1. The Sn   Sn-1  (n>1) transition is more
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