

CHIRAL IONIC LIQUIDS: APPLICATIONS IN CHEMISTRY AND TECHNOLOGY

Editors:

Harish Kumar Chopra
Avtar Singh
Anupama Parmar

Bentham Books

Chiral Ionic Liquids: Applications in Chemistry and Technology

Edited by

Harish Kumar Chopra

Department of Chemistry, SLIET
Longowal, India

Avtar Singh

Department of Chemistry, SLIET
Longowal, India

&

Anupama Parmar

PG Department of Chemistry, M. M. Modi College
Patiala, India

Chiral Ionic Liquids: Applications in Chemistry and Technology

Editors: Harish Kumar Chopra, Avtar Singh and Anupama Parmar

ISBN (Online): 978-981-5305-78-4

ISBN (Print): 978-981-5305-79-1

ISBN (Paperback): 978-981-5305-80-7

© 2024, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

First published in 2024.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
2. Your rights under this License Agreement will automatically terminate without notice and without the

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.
80 Robinson Road #02-00
Singapore 068898
Singapore
Email: subscriptions@benthamscience.net

CONTENTS

FOREWORD	i
PREFACE	ii
LIST OF CONTRIBUTORS	iv
CHAPTER 1 BASIC CONCEPTS OF IONIC LIQUIDS AND CHIRALITY	1
<i>Brenno A.D. Neto, Pedro S. Beck and Alexandre A.M. Lapis</i>	
INTRODUCTION	1
Structural Organization of Ionic Liquids	4
Non-innocent Nature of Ionic Liquids	5
Ion-pairing in Ionic Liquids	5
PIONEERING WORKS	8
HIGHLIGHTED WORKS	10
CONCLUDING REMARKS	14
REFERENCES	14
CHAPTER 2 DESIGN, SYNTHESIS, AND APPLICATIONS OF CHIRAL CARBOHYDRATE IONIC LIQUIDS	19
<i>Sabbasani Rajasekhar Reddy, Sathi Bhulakshmi, Treesa Mary Chacko, P. Krishnraj, Jyothylakshmi Jayakumar and Pavani Yasam</i>	
INTRODUCTION	19
Low Volatility	20
Wide Liquid Temperature Range	20
High Thermal Stability	20
Good Solvating Power	20
High Ionic Conductivity	20
Tunable Properties	20
Renewable and Sustainable	21
Biocompatible	21
Chirality	21
Versatility	21
SYNTHESIS OF CARBOHYDRATE-BASED IONIC LIQUIDS	22
Protection Strategies	22
Quaternization	23
<i>Glycosylation Reactions</i>	23
<i>Nucleophilic Substitution Reactions</i>	23
<i>Gluconamide Formation</i>	23
Anion Metathesis	24
<i>Synthesis of Xylose-Based Ionic Liquids</i>	24
<i>Synthesis of Ribose-Based Ionic Liquids</i>	25
<i>Synthesis of Galactose-Based Ionic Liquids</i>	27
<i>Synthesis of Glucose-Based Ionic Liquids</i>	27
<i>Synthesis of Isosorbide and Isomannide-Based Ionic Liquids</i>	33
APPLICATIONS OF CARBOHYDRATE-BASED IONIC LIQUIDS	34
Application as Chiral Catalyst in Organic Synthesis and Chiral Recognition	34
Chiral Recognition of Racemic Mosher's Acid Salt	34
Application in Diels Alder Reaction	35
Application of CCIL in Michael Addition	38
Glucose-based CIL Application in Dehydrohalogenation Reaction	39
Glucose-based CIL Application in the Esterification Reaction	40

Glucose-based CIL Application as an Organocatalyst in the Knoevenagel Condensation Reaction	40
Application of Glucose-based CIL in the Suzuki–Miyaura Cross-Coupling Reaction	41
Application in Antimicrobial Resistance	42
Application in Desulfurization of Fuels	42
Application in Stimuli-Responsive Thermochromic Systems	43
Application in the Agriculture Sector	44
CONCLUDING REMARKS	44
REFERENCES	45
CHAPTER 3 CHIRAL IONIC LIQUIDS FROM AMINO ACIDS AND TERPENOIDS:	
SYNTHESIS AND APPLICATIONS	48
<i>Monica Dinodia and Satnam Singh</i>	
INTRODUCTION	48
Chiral Ionic Liquids from Amino Acids	49
Terpenoid-Based Chiral Ionic Liquids	57
CONCLUDING REMARKS	66
REFERENCES	66
CHAPTER 4 ROLE OF CHIRAL IONIC LIQUIDS IN ENANTIOSEPARATIONS USING CAPILLARY ELECTROPHORESIS	
<i>Kuldeep Kaur, Shikha Bhogal, Simrat Kaur and Ashok Kumar Malik</i>	
INTRODUCTION	72
Classification and Synthesis of Chiral Ionic Liquids	74
MECHANISM OF ENANTIOSEPARATIONS USING CILS IN CE	75
SELECTION AND DESIGN OF CILS FOR ENANTIOSEPARATION IN CE	77
APPLICATIONS OF CILS IN CAPILLARY ELECTROPHORESIS	79
CILs as Chiral Selectors in Dual Separation Systems	79
CILs as Sole Chiral Selectors	84
CHALLENGES AND FUTURE PERSPECTIVES	86
CONCLUDING REMARKS	87
REFERENCES	88
CHAPTER 5 CHIRAL IONIC LIQUIDS AS STATIONARY PHASES IN ELECTROPHORETIC SEPARATIONS	
<i>Manpreet Kaur and Ashok Kumar Malik</i>	
INTRODUCTION	93
Principle of Capillary Electrophoresis (CE)	94
DIFFERENT FUNDAMENTAL MODES OF OPERATION OF CE	96
Electro-Kinetic Chromatography (EKC)	96
<i>Non-micellar Chiral Capillary Electrokinetic Chromatography (CEKC)</i>	96
<i>Micellar Electrokinetic Chromatography (MEKC)</i>	97
<i>Capillary Electrochromatography (CEC)</i>	98
Capillary Zone Electrophoresis	99
CILS IN CAPILLARY ELECTROPHORESIS	101
CILs as Chiral Selectors	101
CILs as Chiral Ligands	103
CILs as Background Electrolyte Additives (BGES)	104
CONCLUDING REMARKS	107
REFERENCES	107
CHAPTER 6 CHIRAL IONIC LIQUIDS AND CHROMATOGRAPHY: SYNERGISTIC EFFECTS IN ENANTIOSEPARATIONS	
	112

Shikha Bhogal, Irshad Mohiuddin, Sandeep Kumar, Asnake Lealem Berhanu, Kuldeep Kaur and Ashok Kumar Malik

INTRODUCTION	113
Structural and Synthetic Aspects of Chiral Ionic Liquids	114
APPLICATIONS OF CHIRAL IONIC LIQUIDS IN ENANTIOMERIC SEPARATIONS	116
Chiral Ionic Liquids in Gas Chromatography	116
Chiral Ionic Liquids in Liquid Chromatography	119
Chiral Ionic Liquids as Stationary Phases in Liquid Chromatography	121
Chiral Ionic Liquids as Mobile Additives in Liquid Chromatography	122
MECHANISM OF CHIRAL RECOGNITION	123
FUTURE PERSPECTIVES	125
CONCLUDING REMARKS	126
REFERENCES	127
CHAPTER 7 CHIRAL IONIC LIQUIDS IN CHIRAL RECOGNITION METHODS USING SPECTROSCOPIC TECHNIQUES	132
<i>Avtar Singh, Nirmaljeet Kaur, Rohini, Anupama Parmar and Harish Kumar Chopra</i>	
INTRODUCTION	132
CILS IN CHIRAL RECOGNITION	134
Chiral Recognition Using NMR Spectroscopy	134
Chiral Recognition Using Fluorescence Spectroscopy	141
CONCLUDING REMARKS	144
REFERENCES	145
CHAPTER 8 DESIGN, SYNTHESIS, AND ORGANOCATALYTIC APPLICATIONS OF FUNCTIONALIZED CHIRAL IONIC LIQUIDS	148
<i>Usha Kumari Verma, Akanksha Manhas and Kamal K. Kapoor</i>	
INTRODUCTION	148
Chiral Ionic Liquids	149
Designing the Functionalized CIL	150
<i>Introduction of Chiral Centers</i>	151
<i>Functional group Modification</i>	151
<i>Ionic Liquid Structure Modification</i>	151
<i>Coordination with Metal Ions</i>	151
Classification of CILs	151
Synthesis of Functionalized CILs	152
CLASSIFICATION OF FCIL-BASED ORGANOCATALYSTS	152
Amino-FCIL Catalysts	153
Hydrogen Bonding FCIL Catalysts	154
Phase transfer FCIL Catalysts	156
N-Heterocyclic Carbene (NHC) Based FCIL Catalysts	156
ORGANOCATALYTIC APPLICATIONS OF FUNCTIONALIZED CHIRAL IONIC LIQUIDS (FCILS)	157
Asymmetric Michael Addition:	157
Aldol Reaction	164
Epoxidation Reaction	166
Asymmetric Transfer Hydrogenation (ATH)	167
Asymmetric SN1 α -Alkylation of Ketones and Aldehydes	170
Asymmetric Diels Alder Reaction	173
CONCLUDING REMARKS	174
REFERENCES	175

CHAPTER 9 CHIRAL IONIC LIQUID BASED BIPHASIC SYSTEMS IN ENANTIOSEPARATIONS	179
<i>J. Nagendra Babu and Meenu Arora</i>	
INTRODUCTION	179
Phase Diagram of ATPS	180
Types of ATPS	184
<i>Non-ionic Polymer/Non-ionic Polymer</i>	184
<i>Non-ionic Polymer/Ionic Polymer</i>	184
<i>Ionic Polymer/Ionic Polymer</i>	185
System Parameters and their Effect on ATPS	186
<i>Tetrabutylammonium Chiral Ionic Liquid-based ATPS</i>	186
<i>Choline Chiral Ionic Liquid-based ATPS</i>	190
<i>Imidazolium Chiral Ionic Liquid-based ATPS</i>	192
OTHER IONIC LIQUID/SALT ATPS FOR ENANTIOSEPARATIONS	199
CONCLUDING REMARKS	202
REFERENCES	202
CHAPTER 10 CHIRAL-SUPPORTED IONIC LIQUIDS IN ASYMMETRIC SYNTHESIS	212
<i>Pawanpreet Kaur, Anupama Parmar and Harish Kumar Chopra</i>	
INTRODUCTION	212
SILS IN ASYMMETRIC SYNTHESIS	215
Hydrogenation Reactions	215
Epoxidation Reaction	217
Aldol Condensation	220
Diels-Alder Reaction	228
Acylation Reaction	229
Michael Addition	229
Strecker Reaction	233
Mannich Reaction	234
CONCLUDING REMARKS	236
REFERENCES	236
SUBJECT INDEX	466

FOREWORD

Ionic liquids are novel solvents having a wide range of applications due to their tailored properties. Numerous books exist about the synthetic protocols, physicochemical properties, and the chemical and industrial uses of ionic liquids. Ionic liquids having an element of chirality, or chiral ionic liquids, are a sub-class of ionic liquids that play a key role in chiral recognition and separation as well as in asymmetric synthesis and catalysis. Despite an exponential surge in research articles over the past ten years, there are extremely few books on this topic. I am, therefore, very grateful to the editors and publishers for this book.

This book is organized into ten chapters and aims to provide the readers a thorough understanding of the design, synthesis, and significant applications of chiral ionic liquids.

The basics of chirality and ionic liquids are covered in Chapter 1, along with a brief overview of the synthesis, structural design, and uses of ionic liquid systems in chiral transmissions.

Chapter 2 and Chapter 3 give detailed insight into the design, synthesis, and important applications of carbohydrate, amino acid, and terpenoid-based chiral ionic liquids

Chapter 4 to Chapter 7 are very important and can be considered the backbone of this book. These chapters provide insight into the applications of chiral ionic liquids in chiral recognition and separations using capillary electrophoresis, gas and liquid chromatography, and various spectroscopic techniques

Chapter 8 discusses the organocatalytic applications of functionalized chiral ionic liquids

Chapter 9 is about the utility of chiral ionic liquids in aqueous two-phase separations (ATPS)

The final chapter extensively covers the synthesis and applications of chiral-supported ionic liquids

I firmly believe that this book will benefit the students as well as the researchers working in academia and industries. I extend my congratulations to the editors and all of the authors who have contributed to the current format of this book

Arun Kumar Sinha

Ranchi University, Ranchi, Jharkhand & Chief Scientist & Professor (AcSIR)

Division of Medicinal & Process Chemistry CSIR-Central Drug Research Institute

Lucknow

India

PREFACE

Ionic liquids (ILs) are compounds with some privileged properties like non-volatility, task specificity, electrochemical potential, tuneable density and viscosity, less (or non-) toxic nature, recyclability, etc. They have potential applications in different fields like synthesis and catalysis, energy materials, analytical chemistry, separation technologies, biotechnology, etc. Ionic liquids can be divided into several classes, such as protic ionic liquids, room temperature ionic liquids, chiral ionic liquids, Lewis acidic ionic liquids, etc. Among the various classes of ionic liquids, chiral ionic liquids (CILs) gained considerable attention from the research community in the past few decades as these compounds possess all the inherent properties of simple ionic liquids and are particularly significant in the field of asymmetric synthesis, organo-catalysis, enantiomeric separations and chiral recognition by spectroscopic and chromatographic methods due to the presence of chirality in their structures. The growing demand for pure enantiomers in the pharmaceutical and food industries sparks further development in the field of extraction and separation systems modified with CILs, highlighting them as affordable and environmentally friendly chiral selectors and solvents. In recent years, exponential growth in research publications has been observed in the field of synthesis and applications of CILs.

Our research group has been working on the synthesis and applications of CILs since 2013. The analysis of the existing literature shows that there are numerous books on the synthesis, catalytic, analytical, biotechnology, and industrial applications of ionic liquids, but to the best of our knowledge, there is no book about the synthesis and applications of CILs. In view of this, it was thought to edit a book specifically on these aspects of the CILs. This book is aimed at providing an insight into recent methodologies for the synthesis and applications of CILs in chemistry and technology. The main topics covered in the book (having 10 chapters) include Basic concepts of ionic liquids and chirality; Design, synthesis, and applications of chiral carbohydrate ionic liquids; Chiral ionic liquids from amino acids and terpenoids: synthesis and applications; Role of chiral ionic liquids in enantio-separation using capillary electrophoresis; Chiral ionic liquids stationary phases in electrophoretic separations; Chiral ionic liquids and chromatography: synergistic effects in enantio-separations; Chiral ionic liquids in chiral recognition methods using spectroscopic techniques; Design, synthesis and organo-catalytic applications of functionalized chiral ionic liquids; Chiral ionic liquids based biphasic systems in enantio-separations and Chiral-supported ionic liquids in asymmetric synthesis.

Overall, the book has been written to be a useful resource for academia as well as industry, particularly for students/researchers working in the areas of organic synthesis, engineering materials, and environmental and applied chemistry.

We, as Editors, would like to thank one and all who have been involved in the publication of this book. All our authors have done a prodigious job in formulating their chapters, and it has been a pleasure to read their contributions. All our colleagues have met their obligations in the most timely and passionate manner. We are truthfully indebted to them for making our task so effortless. The editors would also like to thank Ms. Humaira Hashmi, editorial project manager (EPM), and Ms. Sheikh Maryam Rehman, Publications Manager, for their support and help during this project. Finally, in a project like this, someone must take accountability for any mistakes that have crept in. Eventually, we are the editors, and this responsibility is ours. So, we tender an unreserved apology for any mistakes that have been found in the book.

Harish Kumar Chopra
Department of Chemistry, SLIET
Longowal, India

Avtar Singh
Department of Chemistry, SLIET
Longowal, India

&

Anupama Parmar
PG Department of Chemistry, M. M. Modi College
Patiala, India

List of Contributors

Alexandre A.M. Lapis	Universidade Federal da Fronteira Sul, Chapecó, SC, 89815-899, Brazil
Ashok Kumar Malik	Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
Asnake Lealem Berhanu	Department of Chemistry, College of Natural and Computational Science, Wollega University, Post Box 395, Nekmete, Ethiopia
Avtar Singh	Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India
Anupama Parmar	PG Department of Chemistry, M.M. Modi College, Patiala-147001, Punjab, India
Akanksha Manhas	Department of Chemistry, University of Jammu, J&K, India
Brenno A.D. Neto	Laboratory of Medicinal and Technological Chemistry, University of Brasília, Institute of Chemistry (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70910-900, Brazil
Harish Kumar Chopra	Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India
Irshad Mohiuddi	Department of Chemistry, Panjab University, Sector-14, Chandigarh-160014, India
Jyothylakshmi Jayakumar	School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore-632014, India
J. Nagendra Babu	Department of Chemistry, Central University of Punjab, VPO Ghudda, Badal Road Bathinda, Punjab-151401, India
Kuldeep Kaur	Department of Chemistry, Mata Gujri College, Fatehgarh Sahib-140407, Punjab, India
Kamal K. Kapoor	Department of Chemistry, University of Jammu, J&K, India
Monica Dinodia	Department of Chemistry, Hansraj College, Delhi University, Delhi-110007, India
Manpreet Kaur	Department of Applied Sciences, Chandigarh Group of Colleges, Landran-140307, Mohali, Punjab, India
Meenu Arora	Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Dabwali Road, Bathinda, Punjab-151001, India
Nirmaljeet Kaur	Department of Chemistry, Baba Farid College, Bathinda-151001, Punjab, India
Pedro S. Beck	Laboratory of Medicinal and Technological Chemistry, University of Brasília, Institute of Chemistry (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70910-900, Brazil
P. Krishnraj	School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore-632014, India
Pavani Yasam	School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore-632014, India

Pawanpreet Kaur	Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India
Rohini	Department of Chemistry, Baba Farid College, Bathinda-151001, Punjab, India
Sabbasani Rajasekhara Reddy	School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore-632014, India
Sathi Bhulakshmi	School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore-632014, India
Satnam Singh	Thapar Institute of Engineering & Technology (TIET), Patiala-147004, Punjab, India
Shikha Bhogal	University Centre for Research and Development, Chandigarh University, Gharuan, Mohali-140413, Punjab, India Department of Chemistry, Chandigarh University, Gharuan, Mohali-140413, Punjab, India
Simrat Kaur	Department of Chemistry, Mata Gujri College, Fatehgarh Sahib-140407, Punjab, India
Sandeep Kumar	Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
Treesa Mary Chacko	School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore-632014, India
Usha Kumari Verma	Department of Chemistry, University of Jammu, J&K, India

CHAPTER 1

Basic Concepts of Ionic Liquids and Chirality

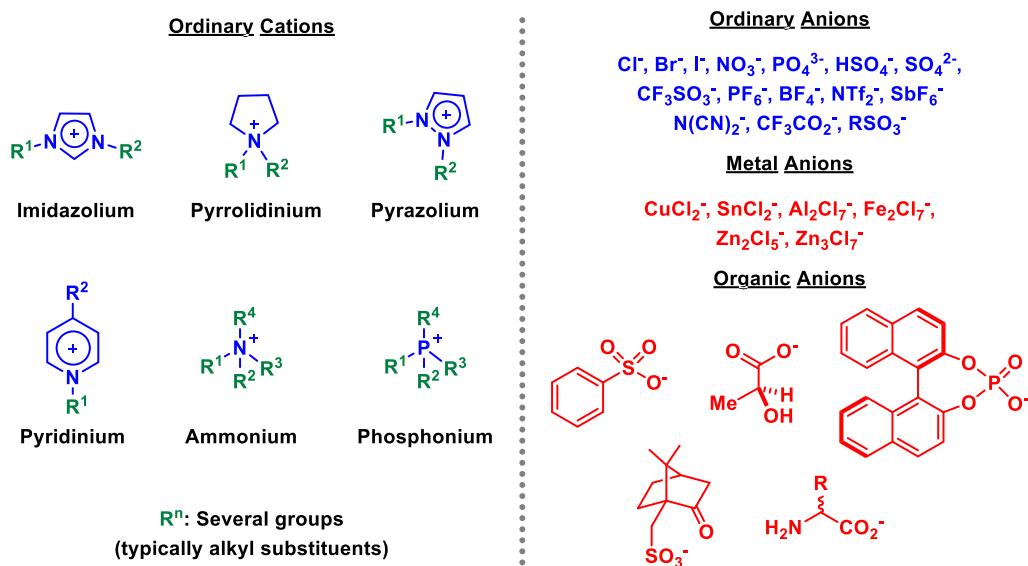
Brenno A.D. Neto^{1,*}, Pedro S. Beck¹ and Alexandre A.M. Lapis²

¹ *Laboratory of Medicinal and Technological Chemistry, University of Brasília, Institute of Chemistry (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70910-900, Brazil*

² *Universidade Federal da Fronteira Sul, Chapecó, SC, 89815-899, Brazil*

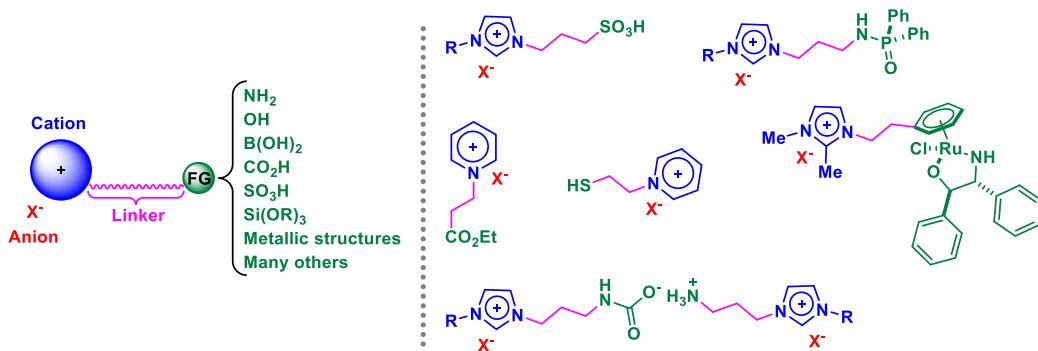
Abstract: The current chapter describes the basic concepts, selected physicochemical properties, and general structural supramolecular organization of ionic liquids. The concepts and importance of ion pairs, supramolecular aggregates, and the organization of neat ionic liquids are also addressed in this chapter. These ionic fluids have also been used as chiral inductors, and the basis for this application is also evaluated in this chapter. The main objectives of this opening chapter of the book are to highlight selected examples showcasing the significance of chiral ionic liquids and their applications in chemistry, particularly in promoting chiral transmission.

Keywords: Application, Chirality, Ionic liquids, Ion pairs, Induction, Organization.

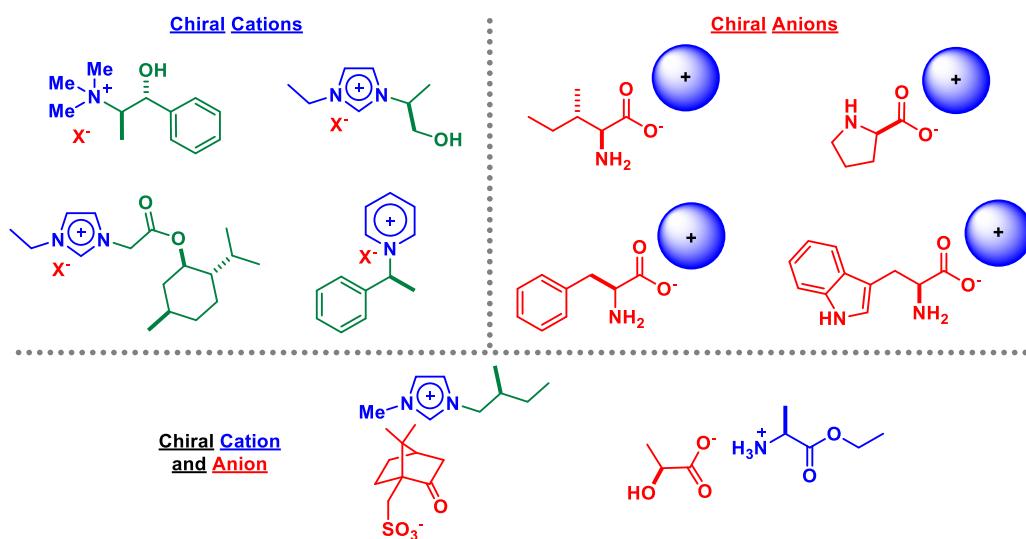

INTRODUCTION

The importance of ionic liquids (ILs) in modern chemistry is undisputed. In the 1990s, the chemistry associated with ILs experienced growing interest, and since the dawn of this century, ILs have returned to prominence. The discovery of ILs is typically attributed to the pioneering work of Paul Walden, who described the synthesis and properties of ethylammonium nitrate in 1914 [1]. However, some have directly questioned whether this was the first report and suggested that this substance was described three years earlier [2]. Indeed, at that time, no one could have predicted that almost a century later, ILs would emerge as a significant and essential area of study. Apart from the controversy, no one doubts the importance and impact that the chemistry associated with ILs has on modern chemistry. This status is easily noticeable by the large number of important reviews recently published describing several applications, specific properties and trends in the use

* **Corresponding author Brenno A.D. Neto:** Laboratory of Medicinal and Technological Chemistry, University of Brasília, Institute of Chemistry (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70910-900, Brazil; E-mail: brenno.ipi@gmail.com


of these ionic fluids. Due to their industrial applications, the interest in ILs chemistry and technologies has increased, as reviewed elsewhere [3 - 7]. In almost every field of technology, ILs are currently being utilized due to their exceptional, appealing and tunable physicochemical properties, which are primarily responsible for their immense success. By carefully selecting both the cation and anion, it is possible to obtain an IL with properties tailored to a specific process.

ILs (examples in Fig. 1) may be defined as molten salts with melting points down to 100 °C. They are composed entirely of ions, typically with an organic cation and an anion, which may be organic or inorganic [8]. Among the attractive physicochemical properties observed for these salts, it is possible to highlight their negligible vapor pressure, thermal and chemical stabilities, typically a large electrochemical window, and relatively elevated ionic conductivity.


Fig. (1). Structures of some cations and anions used to afford ionic liquids.

Due to the success observed in the application of ILs in several areas of technology, the class of task-specific ILs (also known as TSILs) naturally emerged. TSILs (examples in Fig. 2) arise from a reaction to incorporate a functional group covalently tethered to either the cation, the anion, or both of an otherwise ordinary IL. The first example of a TSIL was described in 1999, and it was applied to promote the benzoin condensation reaction [9]. A few years later, the concept of TSILs was coined and summarized [10]. TSILs aim to harness the beneficial physicochemical properties of ordinary ILs with any property of the functionalization incorporated in the final structure.

Fig. (2). Examples of task-specific ionic liquids. (Left) General molecular architecture of a TSIL and (Right) examples of some TSILs already described in the literature.

The evolution of IL chemistry naturally led to the development of chiral ILs (CILs) and chiral TSILs (CTSILs), as shown in Fig. (3).

Fig. (3). Examples of chiral ionic liquids include those utilizing chiral groups on the cation (blue), on the anion (red), or combining them on both.

The first IL bearing two stereogenic centers was reported in 1996 [11], but the C-2 symmetry axis renders the structure achiral. A few years later, Seddon and co-workers reported the first example of a chiral imidazolium-based IL [12]. The anion was derived from lactic acid, and the lactate-containing structure was applied as the solvent to perform Diels-Alder reactions with reasonable diastereoselectivities (endo/exo). CILs may have their chirality held in the cation, in the anion, or both [13]. The development of the chemistry of ILs and their chiral

CHAPTER 2

Design, Synthesis, and Applications of Chiral Carbohydrate Ionic Liquids

Sabbasani Rajasekhara Reddy^{1,*}, Sathi Bhulakshmi¹, Treesa Mary Chacko¹, P. Krishnraj¹, Jyothylakshmi Jayakumar¹ and Pavani Yasam¹

¹ School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore-632014, India

Abstract: Carbohydrates are nature's most prevalent bio-organic substance. Because of their benign nature and ubiquitous availability, the most relevant field of research is examining these chemicals for value-added uses. Although carbohydrate-derived chiral ionic liquids have shown promise in asymmetric synthesis, carbohydrate-based chiral auxiliaries, catalysts, and reagents have received little attention. Only CILs derived from isomannide and isosorbide proved useful for a variety of sustainable catalysis and asymmetric reactions. As a result, numerous research groups have recently developed carbohydrate-derived chiral ionic liquids from a naturally available chiral pool and evaluated their application in asymmetric synthesis and sustainable applications. This book chapter will cover the design, synthesis, and applications of chiral carbohydrate ionic liquids.

Keywords: Asymmetric synthesis, Carbohydrates, Catalysis, Sustainable, Synthesis.

INTRODUCTION

Ionic liquids have gained significant attention in recent years due to their unique properties and diverse applications in various fields of science and technology. These remarkable liquids are composed entirely of ions and have melting points below 100°C [1]. Unlike traditional organic solvents, which consist of molecules, ionic liquids are made up of large organic cations and inorganic or organic anions. This distinctive molecular arrangement results in their intriguing properties and provides a platform for innovative applications [2].

Ionic liquids possess several distinct properties that make them attractive for various applications. Some key properties include:

* Corresponding author Sabbasani Rajasekhara Reddy: School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore-632014, India; E-mail: sekharareddy@vit.ac.in

Low Volatility

Ionic liquids have low vapor pressures, making them non-volatile and less prone to evaporation compared to conventional solvents.

Wide Liquid Temperature Range

Ionic liquids can remain liquid over a wide temperature range, including room temperature, which allows for their practical use.

High Thermal Stability

Ionic liquids are generally thermally stable, even at elevated temperatures, making them suitable candidates for high-temperature processes.

Good Solvating Power

Ionic liquids exhibit excellent solvating capabilities for both polar and non-polar compounds, enabling efficient dissolution of a wide range of substances.

High Ionic Conductivity

Ionic liquids can possess high ionic conductivity, making them potential candidates for use as electrolytes in energy storage and conversion devices.

Tunable Properties

By modifying the cation and anion constituents, the physicochemical properties of ionic liquids can be tailored to meet specific requirements.

However, the toxicity of certain ILs has raised concerns regarding their environmental impact and potential health hazards [3]. To address these concerns, researchers have turned their attention to developing biobased ionic liquids as a more sustainable and environmentally friendly alternative. Biobased ionic liquids derived from renewable biomass sources offer the potential to overcome the toxicity issues associated with traditional ILs while retaining their beneficial properties [4].

The development of biobased ionic liquids provides a promising approach to mitigate the toxicity concerns associated with traditional ILs. By utilizing renewable biomass sources, these ILs offer improved biocompatibility, reduced environmental impact, and enhanced biodegradability. The use of biobased ILs can contribute to the development of more sustainable and environmentally friendly solvents for various applications, ensuring a greener future for the utilization of ionic liquids.

The development of carbohydrate-based ionic liquids arose from the desire to explore sustainable and biocompatible alternatives to traditional ionic liquids. Carbohydrates, being renewable and abundant natural resources, offer a green and accessible starting material for the synthesis of these ionic liquids. Moreover, carbohydrate-based ionic liquids can exhibit unique properties and compatibility with biological systems, making them attractive for various applications in pharmaceuticals, biocatalysis, and separation sciences. Carbohydrate-based ionic liquids offer several advantages over their conventional counterparts [5 - 7].

Renewable and Sustainable

Carbohydrates are derived from renewable sources, making carbohydrate-based ionic liquids more environmentally friendly and sustainable compared to other ionic liquids derived from fossil fuels.

Biocompatible

Carbohydrate-based ionic liquids are generally biocompatible and have lower toxicity, making them suitable for applications involving living systems, such as biocatalysis and pharmaceuticals.

Chirality

Carbohydrate-based ionic liquids can possess inherent chirality due to the asymmetric nature of carbohydrates. This chirality can be harnessed for chiral discrimination, enantioselective synthesis, and chiral separation processes.

Versatility

Carbohydrate-based ionic liquids can be chemically modified to fine-tune their properties, allowing for a wide range of applications in different fields.

Chirality plays a fundamental role in chemistry, particularly in pharmaceuticals, biology, and materials science. Chirality refers to the property of asymmetry in a molecule, where a molecule and its mirror image are not superimposable. Enantiomers, the two mirror-image forms of chiral molecules, often exhibit different biological activities, pharmacological effects, and chemical reactivity. Understanding and controlling chirality is crucial in drug design, asymmetric synthesis of pharmaceuticals, enantioselective catalysis, and chiral separation techniques. Carbohydrate-based ionic liquids, with their inherent chirality, offer a valuable platform to study and exploit the importance of chirality in various chemical processes and applications [8]. Scientists have leveraged the chiral nature of carbohydrates to develop and utilize carbohydrate-based ionic liquids in various applications. By incorporating chiral carbohydrates into the ionic liquid

CHAPTER 3

Chiral Ionic Liquids from Amino Acids and Terpenoids: Synthesis and Applications

Monica Dinodia¹ and Satnam Singh^{2,*}

¹ Department of Chemistry, Hansraj College, Delhi University, Delhi-110007, India

² Thapar Institute of Engineering & Technology (TIET), Patiala-147004, Punjab, India

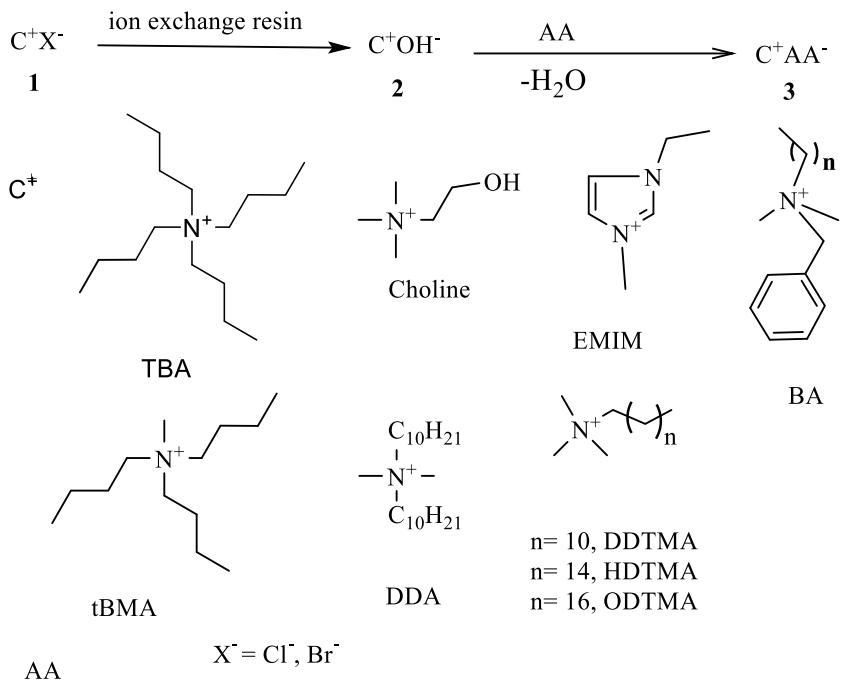
Abstract: Ionic liquids (ILs) are widely useful as catalysts or as a medium for reactions in varied chemical processes since they possess environment-friendly chemical/physical properties. Ionic liquids (ILs) are those chemical entities that consist of a cation and an anion having melting points less than 100 °C. Since the last decade, there has been an increase in the number of chiral ionic liquids (CILs) and their applications. Most chiral ILs have either a chiral cationic or chiral anionic center. There are also some CILs with both chiral cationic and chiral anionic centers. Molecules obtained from nature (biomolecules) are mostly degradable; a number of them are not toxic and are sustainable in nature. So, the development of CILs from biodegradable biomolecules provides an opportunity to further improve their greener aspects. Amino acids are a special kind of biomolecule due to their easy conversion into both anions and cations; the diverse functionalities in their side chains make them chiral and also enhance their properties. In comparison to various other chiral molecules, amino acids are cheaper and plentiful. In the last few years, an array of novel chiral ionic liquids were synthesized from simple, economical, naturally occurring terpenoids. In this chapter, very recent developments about the amino acids and terpenoid-based CILs have been reported and reviewed.

Keywords: Amino acids, Biomolecules, Catalysts, Chirality, Chiral ionic liquids, Chiral pool, Environmentally benign, Green credentials, Ionic liquids, Sustainable, Terpenoids.

INTRODUCTION

Due to the growing environmental concern, the need for greener solvents for organic transformations has sparked the evolution of novel substitutes for toxic, volatile organic solvents [1]. Amongst them, room temperature ionic liquids (RTILs) appeared as potential candidates, and their prominent features include

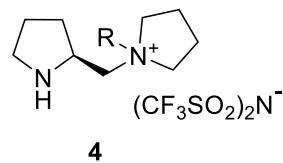
* Corresponding author Satnam Singh: Thapar Institute of Engineering & Technology (TIET), Patiala-147004, Punjab, India; E-mail: ssingh@thapar.edu


low vapor pressure, tunable properties, and recyclability [2]. These ionic liquids (ILs) can be easily synthesized and are useful as solvents in synthesis [3].

There had been an enormous increase in reaction yields/selectivity in comparison to the identical reactions using conventional organic solvents. Due to the presence of ions, they are polar and are able to dissolve a variety of organic and inorganic reactants. In the last ten years, another interesting group of ionic liquids, namely chiral ionic liquids, had emerged [4 - 6]; they have at least one chiral center. These chiral ionic liquids have stereogenic atom/atoms in the cation, anion, or in both the ions [7]. Chiral ionic liquids are widely used in chiral synthesis [8], chiral extraction [9], and as stationary phases in chiral chromatography [10a]. Flieger *et al.* [10b], in their recent interesting review, described the structures, properties, and applications of CILs in liquid chromatography, countercurrent chromatography, and various extraction techniques developed in recent years. Biomolecules are organic substances that form the basis of life. The union of ILs and biomolecules [11 - 14] opens opportunities in various fields like organic synthesis, electrochemistry, nanotechnology, biochemistry, pharmacology, food science, *etc.* Out of these biomolecules, amino acids (AAs) and terpenoids are the most abundant biomaterials in the nature and are well established since they are non-toxic, biocompatible and biodegradable [15]. In the present chapter, recent work on the development of CILs using amino acids/terpenoids is reported. Apart from that, work on new applications of amino acid/terpenoid-based chiral ionic liquids has also been reported.

Chiral Ionic Liquids from Amino Acids

Amino acids provide a renewable substitute for the development of ILs, having less toxicity and better biodegradability, which are the most important characteristics of “green” ILs.


Rozwadowski *et al.* [16] synthesized amino acid ionic liquids (AAILs) **3** using different L-amino acids and cations like tetrabutylammonium (TBA), choline, alkyl, 1-ethyl-3-methylimidazolium (EMIM), *etc.* (Scheme 1). NMR and FTIR spectra were taken; properties like specific rotation, thermal stability, glass transition temperature, and surface activity studies were reported. Many analyzed salts were thermally stable (in the range of 150–200 °C) and were liquids at room temperature. Out of the reported compounds, only 1-ethyl-3-methylimidazolium salts could dissolve cellulose.

glycine, L-valine, L-leucine, L-isoleucine, L-histidine, L-methionine, L-tyrosine, L-tryptophan, L-arginine, and L-threonine

Scheme (1). Synthetic route to amino acid-based ionic liquids (AAILs).

Nobuoka and coworkers [17] synthesized (S)-proline-based chiral ionic liquids **4** (Fig. **1**) and evaluated them as a chiral catalyst in Michael reaction of styrene derivative with cyclohexanone.

Fig. (1). (S)-proline-based chiral ionic liquids **4**.

The chiral ionic liquid catalyst showed excellent yields, good diastereoselectivities, and enantiomeric excess and was used for three cycles without any reduction in its activity and selectivity.

Zong group [18] carried out toxicity studies on cholinium-based ionic liquids toward a variety of microorganisms and enzymes. These ILs were found to be less

CHAPTER 4

Role of Chiral Ionic Liquids in Enantioseparations Using Capillary Electrophoresis

Kuldeep Kaur¹, Shikha Bhogal^{2,3}, Simrat Kaur¹ and Ashok Kumar Malik^{4,*}

¹ Department of Chemistry, Mata Gujri College, Fatehgarh Sahib-140407, Punjab, India

² University Centre for Research and Development, Chandigarh University, Gharuan, Mohali-140413, Punjab, India

³ Department of Chemistry, Chandigarh University, Gharuan, Mohali-140413, Punjab, India

⁴ Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India

Abstract: Ionic liquids (ILs) are low-melting compounds composed entirely of ions that exist as liquids at room temperature. Chiral ionic liquids (CILs) are a subclass of ILs that possess chiral characteristics. CILs are gaining immense attention as additives in enantioseparation techniques, such as capillary electrophoresis (CE). Capillary electrophoresis is a powerful analytical technique used for the separation of chiral compounds. CILs can affect the separation process through several mechanisms, including chiral recognition, modification of electrophoretic mobility, acting as a unique solvent system, and providing a chiral stationary phase. The use of CILs in the CE system offers several advantages for enantioseparation, including enhanced separation selectivity, improved resolution, and expanded applicability to a wide range of chiral compounds. However, the selection of an appropriate CIL and optimization of experimental conditions are critical to achieving the desired enantioseparation performance. Taking into account the blossoming research in the field, the present chapter summarizes the advancement in the application of CILs in capillary electrophoretic separations, taking examples from recent literature.

Keywords: Chiral ionic liquids, Chiral recognition, Capillary electrophoresis, Chiral selectors, Enantioseparations.

INTRODUCTION

Enantioseparation is the process involving the separation of enantiomers, which are optical isomers that are non-superimposable mirror images of each other. This process is significant across several scientific and industrial fields, such as the pharmaceutical industry [1], food industry [2], agrochemicals [3], environmental

* Corresponding author Ashok Kumar Malik: Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India; E-mail: malik_chem2002@yahoo.co.uk

analysis [4], and chemical synthesis [5]. For example, enantioseparation is of prime importance in the field of pharmaceuticals. The enantiomers of a racemic drug can exhibit markedly different pharmacological, toxicological, pharmacokinetic, and metabolic properties [6]. Therefore, it is important to ensure the enantiomeric purity of drugs to control their efficacy and safety while minimizing or eliminating the side effects. Enantioseparation can also enable understanding and control of the properties of chiral compounds, thus helping to develop new drugs with improved efficacy and safety profiles [7]. The most widely used techniques for enantioseparation are high-performance liquid chromatography (HPLC), gas chromatography (GC), capillary electrophoresis, *etc.* [8]. However, the recent progress in the capillary electrophoresis technique has made this a preferred technique for enantioseparations, as evident from an increasing number of publications in this field [9]. Capillary electrophoresis (CE) involves the separation of analytes based on their electrophoretic mobility in the presence of an electric field. As compared to HPLC and GC, capillary electrophoresis offers several advantages for enantioseparation, including simple instrumentation, low consumption of solvents, high separation efficiency, and good resolution. CE offers high flexibility based on the use of a variety of separation modes, such as Electrokinetic Chromatography (EKC), Micellar Electrokinetic Chromatography (MEKC), Microemulsion Electrokinetic Chromatography (MEEKC), Non-aqueous CE (NACE), Ligand-Exchange CE (LECE), or Capillary Electrochromatography (CEC) [10, 11]. Among them, EKC is the most popular mode for chiral separations.

The process of chiral separation requires a chiral selector that can discriminate among the enantiomers, enabling their separation. A great variety of molecules, such as surfactants, antibiotics, chiral crown ethers, polysaccharides, and cyclodextrins, have been employed as chiral selector molecules in enantioseparation [12]. Though many of them have proved effective in enantioseparations, some drawbacks, such as low solubility, complex synthesis, high cost, temperature instability, low resolution, *etc.*, may limit their use [13]. The search for new chiral selectors capable of achieving higher resolution is still the most relevant topic in the field of enantioseparation. In this respect, chiral ionic liquids (CILs) recently attracted attention for achieving enantioseparations [14, 15]. Ionic liquids (ILs) are molten salts composed of organic cations and inorganic or organic anions. ILs have drawn the interest of the scientific community due to lucrative properties such as low melting point, low vapor pressure, high stability, reusability, *etc.* [16]. CILs are a subclass of ILs that possess a chiral moiety in their structure. CILs can provide chiral recognition and interact selectively with enantiomers, leading to their differential migration in the capillary. In comparison to traditional chiral selectors, the advantageous properties of CILs that make them desirable for use in enantioseparations include

low melting points, low volatility, high thermal stability, wide temperature range, tunability, high selectivity, versatility, and reusability [17]. Moreover, the CILs can also act as non-molecular solvents, dissolving compounds of a broad range of polarity. Thus, they are capable of acting both as chiral solvents and chiral selectors, having the potential to discriminate between the enantiomers with high target specificity [12]. This simplifies the separation process by eliminating the need for separate additives or solvents. The dual functionality of providing optical resolution and acting as solvent is an advantage over traditional chiral selectors, as the use of traditional chiral selectors may require one or more solvents as mobile phase additives. In CE, CILs can be used as background electrolyte additives in a system with a chiral selector, or they can be used as sole chiral selectors for the separation of a wide range of chiral compounds [18]. Several review articles concerning the use of CILs in chiral separations have been published in recent years, indicating interest in the field [12, 13, 19].

The present chapter reviews the recent applications of CILs in capillary electrophoretic separations as chiral selectors in dual systems or as sole chiral selectors. Along with discussing the classification and synthesis of CILs involved in enantioseparations, it also throws light on the mechanisms involved in enantioseparation. The factors affecting the selection and design of CILs for electrophoretic separations, along with strategies for their design and synthesis, have also been discussed. Furthermore, the challenges and future prospects in the use of CILs for electrophoretic separations have been deliberated.

Classification and Synthesis of Chiral Ionic Liquids

The ionic liquids generally contain bulky organic cations (ammonium, alkylimidazolium, and pyridinium) and organic or inorganic anions (hexafluorophosphate (PF_6^-), tetrafluoroborate (TFB), *etc.*). The type and size of cations and anions influence the unique physicochemical properties of ILs, namely high conductivity, low volatility and vapor pressure, good thermal stability, high miscibility in water and organic solvents, *etc* [12]. The new group of ILs having a chiral center was generated with the discovery of imidazole-based quaternary salt by Herrmann *et al.* in 1996 [20]. However, the term 'chiral ionic liquids' was first used by Howarth *et al.* in 1997, who reported the synthesis of chiral dialkyl imidazolium bromide and its application as the catalyst in the Diels–Alder reaction [21]. In CILs, the chirality is endowed by the cation or the anion or sometimes by both the cation and anion. The chiral cation is often an ammonium, imidazolium, phosphonium, pyridinium, or piperidinium cation. The chiral anions can be amino acids, mandelic acid, lactic acid, borates, or camphorsulfonic acid [19]. The anion may also be a simple non-chiral ion Cl^- and Br^- . The CILs used for enantioseparation can be classified into three categories

CHAPTER 5

Chiral Ionic Liquids as Stationary Phases in Electrophoretic Separations

Manpreet Kaur¹ and Ashok Kumar Malik^{2,*}

¹ Department of Applied Sciences, Chandigarh Group of Colleges, Landran-140307, Mohali, Punjab, India

² Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India

Abstract: Ionic liquids (ILs) are exceptional solvents having melting points at or below 100 °C. They are completely made up of ions, often consisting of an organic cation and an inorganic or organic anion. ILs having chiral moiety are referred to as chiral ionic liquids (CILs). Cations, anions, or both can be chiral in CILs. A CIL can have chiral azolinium, imidazolium, ammonium, or pyridinium as its chiral cationic component. Lactic acid, borate, or camphor sulfonate are some examples of the chiral anion. CILs have recently been used in electrophoretic techniques in different forms, such as chiral ligands, background electrolyte (BGE) additives, chiral selectors, and chiral stationary phases for the separation of chiral compounds. As they integrate the benefits of ILs and the features of a chiral moiety, they are thought to be particularly fascinating in chiral investigation. Notably, the use of CILs as chiral selectors offers advantages over other chiral selectors whose employment is typically constrained by a few issues, such as high-temperature instability, high UV absorptivity, complex synthetic methodologies, low solubility, and expensive nature. Therefore, it is crucial to consider how CILs can be used as solvents and chiral selectors. In this chapter, the diverse applications of chiral ionic liquids as stationary phases in electrophoretic separations are discussed in detail.

Keywords: Chiral ionic liquids, Chirality, Chiral molecules, Chiral selectors, Electrophoretic separations, Stationary phases.

INTRODUCTION

Ionic liquids (ILs) are exclusive solvents having melting temperatures at or below 100 °C [1]. They are completely made up of ions, often consisting of organic cations and organic or inorganic anions [2]. ILs started gaining attention in the 1980s due to their unique properties, such as viscosity, non-flammability, minimal

* Corresponding author Ashok Kumar Malik: Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India; E-mail: malik_chem2002@yahoo.co.uk

vapor pressure, conductivity, and miscibility in a range of solvents [3]. Some properties of ILs are governed primarily by the anion, while others are impacted by the cation shape, symmetry, or length of the alkyl chain. Analytical chemistry has shown a lot of interest in the development and application of ILs [4 - 6].

The subclass of ILs having chiral moiety is known as chiral ionic liquids (CILs) [7]. Azolinium, pyridinium, imidazolium, or ammonium molecules can be a chiral cationic component in CILs. On the other hand, amino acid, lactic acid, borate, or camphor sulfonate can act as a chiral anionic component in CILs [8]. CILs have grown at an exponential rate because of their chiral discrimination capabilities. As they combine the benefits of ILs with those of a chiral moiety, they are regarded as particularly promising in chiral analysis. Moreover, CILs are easy to synthesize and stable at high temperatures and their production is straightforward. For more than ten years, numerous CILs have been used as chiral discrimination tools in extractions, gas chromatography (GC), high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), mass spectrometry (MS), infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopy [4]. Among these techniques, CE demonstrates outstanding chiral recognition power owing to high separation efficiency, minimal sample and solvent consumption, quick migration periods, adaptability, and straightforward instrumentation [9]. In CE, CILs have been used as chiral ligands, chiral selectors, background electrolyte (BGE) additives, and chiral stationary phases for electrophoretic separations of chiral molecules. The use of CILs in electrophoretic separations is important due to their thermal robustness and non-flammability. In this chapter, the diverse applications of CILs as stationary phases in electrophoretic separations are discussed in detail. Even though CILs have only been utilized in a few studies for electrophoretic separations, it is clear from the encouraging outcomes discussed in this chapter that CILs have a bright future in this area and that their use will continue to grow significantly.

Principle of Capillary Electrophoresis (CE)

CE is the most prevalent analytical methodology as a superb alternative to the widely utilized HPLC to carry out the electrophoretic separations of enantiomers, proteins, and nucleic acids based on their binding affinity, charge, and size under an electric field [10]. In this technique, the separation of different species is mainly based on their effective mobilities in a narrow silica capillary having an interior width of 50 mm when subjected to an electric field. The effective mobility is the vector addition of the electrophoretic mobility, which is regarded as electroosmotic flow (EOF) [11]. A fused-silica capillary inner surface silanol group ionizes above pH 3. Positive ions from the electrolyte solution, also known as background electrolyte (BGE), will be drawn by the negative wall created by

the silanol groups at this or higher pH, generating a double layer. When an electric voltage is applied to the capillary ends, cations flow towards the cathode. This flow, or the EOF, will pull the bulk solution in this direction. In light of this, positively charged molecules will enter the detector first in a cathodic detection, followed by neutral species, and then negatively charged molecules. It is worth noting that the molecule size and charge will both affect its effective mobility, as electrophoretic mobility is directly proportional to effective charge and inversely proportional to the molecular size. Negatively charged species can only be detected if the EOF can prevent them from moving electrophoretically toward the anode. Although it is obvious that this is the most straightforward approach, CE's vast versatility opens up a myriad of other options. If, for example, coated capillaries are utilized, this straightforward scenario can be further altered. The coating may be permanent, covalently linked to the inner surface of the capillary, or it may be temporary, requiring replacement after each analytical run. Additionally, electrophoretic-based in-capillary pre-concentration techniques can be used to improve the sensitivity of the proposed procedures, which can also be improved by utilizing detection systems like mass spectrometry (MS) or fluorescence, among others.

Notably, because enantiomers have equal physicochemical properties, their electrophoretic mobility will be identical, and enantioseparation is possible only in a chiral atmosphere, like interactions with a chiral selector. Instead of covalent bonding, these interactions often include van der Waals forces or hydrogen bonding. As a result, diastereoisomer complexes are momentarily formed, and depending on their different mobilities, they are subsequently detached in a process known as direct methodology. Numerous chiral selectors, such as chiral metallic complexes, crown ethers, cyclodextrins, and chiral surfactants (such as bile acids), have been utilized in the CE [12]. Because of their remarkable structural features, thermal stability, and adjustable polarity, CILs have emerged as efficient chiral selectors in CE. Also, it is possible to synthesize a variety of task-specific CILs with different anion-cation combinations.

Overall, two mechanisms—one chromatographic and the other electrophoretic—are used to achieve chiral separations in CE. The different complexation constants between the enantiomers and the chiral selector give birth to the chromatographic mechanism. For instance, if an analyte is strongly “embedded” in the chiral selector, it results in the formation of two enantiomer-chiral selector complexes with slightly different sizes. Due to this difference, they have dissimilar electrophoretic mobilities and form the basis of the electrophoretic mechanism.

CHAPTER 6

Chiral Ionic Liquids and Chromatography: Synergistic Effects in Enantioseparations

Shikha Bhogal^{1,2}, Irshad Mohiuddin³, Sandeep Kumar⁴, Asnake Lealem Berhanu⁵, Kuldeep Kaur^{6,*} and Ashok Kumar Malik^{4,*}

¹ *University Centre for Research and Development, Chandigarh University, Gharuan, Mohali-140413, Punjab, India*

² *Department of Chemistry, Chandigarh University, Gharuan, Mohali-140413, Punjab, India*

³ *Department of Chemistry, Panjab University, Sector-14, Chandigarh-160014, India*

⁴ *Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India*

⁵ *Department of Chemistry, College of Natural and Computational Science, Wollega University, Post Box 395, Nekmete, Ethiopia*

⁶ *Department of Chemistry, Mata Gujri College, Fatehgarh Sahib-140407, Punjab, India*

Abstract: Chiral ionic liquids (CILs) are a subcategory of ionic liquids that possess a chiral moiety. The need for chiral separations in several industries, including pharmaceutical, food, and chemical industries, has led to an increasing search for materials capable of performing such separations. CILs have emerged as effective candidates for the separation of enantiomers because of their advantageous properties like low melting point, little vapor pressure, high thermal stability, good electrical conductivity, and low cost. They are being employed in chromatographic methods as chiral ligands, stationary phases, and chiral selectors for the separation of chiral compounds. As compared to other chiral selectors (cyclodextrins, polysaccharides, surfactants, and crown ethers), CILs show better solubility, easy synthesis, and low cost. They represent an intriguing opportunity for use in chromatography because of their wide range of solubility in organic and inorganic solvents, as well as their miscibility with common solvents (methanol and acetonitrile). Considering the flourishing research in the field, the present chapter summarizes the advancement in the application of CILs as chiral ligands, stationary phases, and chiral selectors in liquid and gas chromatographic techniques. Furthermore, the chiral recognition mechanism and prospects for the use of CILs in enantioseparations have been examined.

^{*} Corresponding authors Ashok Kumar Malik and Kuldeep Kaur: Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India and Department of Chemistry, Mata Gujri College, Fatehgarh Sahib-140407, Punjab, India; E-mails: malik_chem2002@yahoo.co.uk, shergillkk@gmail.com

Keywords: Amino acids, Chiral mechanism, Chiral ionic liquids, Chiral molecules, Chiral cation, Chiral anion, Chiral ligands, Chiral selectivity, Diastereomers, Enantiomers, Gas chromatography, Green precursors, Liquid chromatography, Mobile phase additives, Racemic drugs, Stereoselective, Stationary phases.

INTRODUCTION

Ionic liquids (ILs) comprise salts having a melting point below 100°C. These have piqued the interest of researchers in several disciplines of the chemical industry during the last several years. The earliest mention of the production of salts with the qualities of today's "ionic liquids" emerged in the nineteenth century, between 1888 and 1914 [1, 2]. ILs partially substituted organic solvents and are gaining recognition due to their environmentally friendly nature and the ability to synthesize task-specific ILs [3]. ILs have the capacity to dissolve both polar and nonpolar substances, and their most important attribute is that they cannot evaporate at high temperatures. Typically, ILs are primarily composed of cations that contain nitrogen and are rich in alkyl groups, paired with various anions like halides, tetrafluoroborate, hexafluorophosphate, triflimide, *etc.* As ILs consist of large inorganic anions along with charged organic cations that are not closely packed in the lattice, the melting points of ILs are generally low. Recently, ILs have attracted considerable attention in analytical chemistry and have been used in gas and liquid chromatography, extractions, capillary electrophoresis, and spectroscopy [4 - 7]. The particular properties of ILs can be expanded according to the task and can create a new type of ILs [8].

CILs constitute a type of ILs with a chiral moiety that has IL-like features, including low melting and boiling points, thermal stability, minimal vapor pressure, and excellent electrical conductivity [9, 10]. The first chiral quaternary salts were N-heterocyclic carbenes of imidazole, which were prepared by Herrmann *et al.* in 1996 [11]. However, these chiral imidazolium chlorides were not known as CILs at the time. Howarth *et al.* introduced the term "chiral ionic liquids" for the first time in 1997, when they characterized stable chiral dialkyl imidazolium bromide as Lewis acid, which was applied as the catalyst in the Diels-Alder reaction, affording great enantiomeric purity of the product [12]. CILs have lately been recognized as non-molecular solvents as well as chiral agents with chiral discrimination abilities and high selectivity towards selected enantiomers. This growing relevance is due to the CILs group's unique structural characteristics, in which either the cationic or anionic component, or both, can be chiral, making them enantioselective. In addition to the common properties of ILs, CILs have the advantages of easy synthesis and functionalization, making them

widely used in a wide range of applications such as chiral recognition [13, 14], organocatalysis [15, 16], background electrolytes in capillary electrophoresis [17, 18], stationary phase additives in liquid and gas chromatography [5, 19, 20], high-performance liquid chromatography [8, 21], liquid-liquid extraction [22] and stereoselective polymerization [23, 24]. The two of the most extensively studied uses of CILs at present are chiral molecule recognition and asymmetric organocatalysis. Both concepts incorporate the term 'chirality' in their definitions and are extremely beneficial for the isolation and synthesis of a wide range of key enantioselective chemicals. Various spectroscopic and chromatographic methods can be employed to analyze the separation of enantiomers of molecules. These techniques include NMR spectroscopy, fluorescence spectroscopy, circular dichroism, liquid or gas chromatography, capillary electrophoresis, capillary electrochromatography, micellar chromatography, and supercritical chromatography [7, 25]. The combination of these systems has yielded significantly improved outcomes in resolving enantiomers, thanks to the synergistic effects they offer when used together. However, the given chapter mainly focuses on the application of CILs as efficient chiral selectors in chiral recognition combined with chromatographic techniques mainly liquid and gas chromatography.

Structural and Synthetic Aspects of Chiral Ionic Liquids

CIL molecules can have a chiral cation, chiral anion, or both ions (Fig. 1). CILs can dissolve a wide range of polar and nonpolar analytes while also providing chiral selectivity. Furthermore, CILs are simple to synthesize and stable at high temperatures. There are two synthetic approaches for CILs: asymmetric synthesis and the use of a "chiral pool" as precursors [26, 27]. There has been significant progress in synthesizing CIL precursors from natural sources, direct synthesis from homochiral materials, and asymmetric catalysis employing prochiral precursors as starting materials [28]. Chiral recognition capabilities are frequently harnessed by utilizing a wide range of chiral selectors, such as cyclodextrins, cyclofructans, linear oligo- and polysaccharides, branched polysaccharides, monomeric and polymeric surfactants, macrocyclic and lincomycin antibiotics, crown ethers, etc. These diverse selectors are commonly employed in various applications [29, 30]. The chiral cationic part of a CIL may be a chiral imidazolium, pyridinium, ammonium, or azolinium. The chiral anion may contain a substance such as amino acid, lactic acid, borate, or camphor sulfonate [31]. Many CILs have been synthesized using α -amino acids as starting ingredients, owing to the low cost and high enantiomeric purity of these starting substances. In comparison to imidazolium and quaternary ammonium ILs, which are synthesized from fossil fuel, amino acid-derived ILs are thought of as bio-renewable and hence a greener family of solvents. Because amino acids (AAs) have both a

CHAPTER 7

Chiral Ionic Liquids in Chiral Recognition Methods Using Spectroscopic Techniques

Avtar Singh¹, Nirmaljeet Kaur², Rohini², Anupama Parmar³ and Harish Kumar Chopra¹

¹ Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India

² Department of Chemistry, Baba Farid College, Bathinda-151001, Punjab, India

³ PG Department of Chemistry, M.M. Modi College, Patiala-147001, Punjab, India

Abstract: Chiral recognition and separation methods have received a lot of attention due to the growing need for pure enantiomeric forms of substances. The separation of enantiomers is usually done with the aid of a chiral selector. Numerous chiral selectors, such as crown ethers, polysaccharides, antibiotics, etc., are extensively used in enantiomeric recognition studies; nevertheless, each one of them has limitations of its own. Recently, chiral ionic liquids (CILs), having inherent chirality due to the presence of a chiral cation or anion, have emerged as inexpensive and lucrative chiral selectors for enantiomeric recognition procedures. This article discusses the application of CILs in chiral recognition methods through spectroscopic techniques like UV-visible, NMR, and fluorescence spectroscopy. It also focuses on the mechanism behind chiral recognition.

Keywords: Chiral recognition, Chiral selectors, Chiral ionic liquids, Enantiomers, Fluorescence spectroscopy, NMR spectroscopy, Separation methods.

INTRODUCTION

Chiral recognition and separation methods are very crucial in analytical chemistry as well as in drug design and discovery. Since the two enantiomeric forms of a drug molecule can have different physiological actions and pharmacokinetic activities, the enantiopurity of the drug molecules must be asserted before their marketing. After the thalidomide tragedy, strict rules and regulations are imposed by the various agencies/governments regarding the enantiopurity of drugs. So, as of now, the separation and identification of enantiomers is a crucial step in the

* Corresponding author Harish Kumar Chopra: Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India; E-mail: harishchopra@sliet.ac.in

pharmaceutical, food, agriculture, and other allied industries [1 - 3]. The ever-increasing demand for the different enantiomeric forms of a substance has pushed the scientific fraternity in quest of easy, affordable, and efficient separation methodologies [4, 5].

The fundamental idea guiding chiral recognition and separation is the difference in the free energies of the two diastereomeric complexes formed by the chiral selector with the different enantiomers of the analyte. At least three distinct interactions between the selector and the analyte enantiomers in space exhibit the diastereomeric complex formation. Hence, the enantiomeric separation is feasible in a 'chiral environment' only (*i.e.* the chiral selector must be enantiopure). So, the structure of the chiral selector must have three different groups to interact with the enantiomers; the interactions can be attractive or repulsive [6, 7]. Mostly, the interactions involved are hydrogen bonding, electrostatic, hydrophobic, dipole-dipole, *etc.* It may be noted here that achiral counter anions like BF_4^- , PF_6^- , NTf_2^- , and I^- are also important in the enantioseparation process, as they also interact with the analyte molecules. To analyze the diastereomeric pairs formed between the chiral selector and enantiomers, chromatographic and spectroscopic techniques are commonly used. NMR spectroscopy is one of the most widely used techniques in this context since it makes it very simple to evaluate and differentiate between the NMR signals of the diastereomeric complexes generated with the chiral selector. It is very easy to evaluate the difference between NMR signals of the diastereomeric complexes formed with the chiral selector and, hence, differentiate them. Fluorescence spectroscopy is also an efficient technique for enantiodifferentiation as the fluorescent enhancement/quenching can be measured easily.

For the past three decades, ionic liquids have emerged as very efficient materials with applications in separation and purification methods, catalysis, energy sciences, biotechnology, *etc.* The ionic liquids having any kind of chirality in their structural motifs are called chiral ionic liquids (CILs). The chiral ionic liquids can be tailored/functionalized as per the structural requirements for a particular application. The cationic and anionic moieties can be designed to give CILs that are well famed for their far and wide applications in diverse fields like chiral separation and recognition, analytical techniques, organocatalysis, *etc.* Details of the synthesis, catalytic, and other applications of CILs are beyond the scope of the present chapter and can be found somewhere else [8 - 10]. Herein, we have showcased the multidimensional applications of these scaffolds in the chiral recognition and separation methodologies. Basically, the CILs can be studied in enantiomeric recognition by using chromatographic and spectroscopic techniques. The role of CILs in chromatographic separations has already been reviewed in the

previous chapters. The applications of CILs in spectroscopic techniques, particularly NMR and fluorescence spectroscopy, are discussed in this chapter.

To make the discussion more informative and concise, only the representative reports are discussed, with a special focus on the mechanistic aspects of chiral recognition.

CILS IN CHIRAL RECOGNITION

Chiral Recognition Using NMR Spectroscopy

The assessment of the chiral recognition potential of CILs by using NMR spectroscopy is an easy, energy-efficient, and fastest technique. Numerous methods, including derivatization, lanthanide shift reagents, *etc.*, are commonly used for the enantiomeric separation of racemic analytes using NMR spectroscopy. A myriad variety of chiral salts having chirality in cationic or anionic parts have been utilized for the recognition of *rac*-Mosher's acid and mandelic acid salts by ^{19}F and ^1H NMR spectroscopy, as obvious from the literature findings. The CILs can interact differently with the enantiomeric forms of Mosher's acid salt and lead to the formation of different diastereomeric complexes with both the enantiomeric forms [11, 12]. Some of the representative examples of the use of CILs in enantiomeric recognition using NMR spectroscopy are presented in the following sections.

Luo and co-workers [13] synthesized a series of CILs by employing different amino acid precursors viz. (*S*)-alanine, (*S*)-valine, (*S*)-leucine, (*S*)-isoleucine, and (*S*)-proline. After characterization, these were tested for their potential in chiral recognition of racemic Mosher's acid salt using ^{19}F NMR. The CIL derived from (*S*)-valine (Fig. 1) has shown the maximum enantioseparation capability, and the NMR coupling constant for the peaks was found to be 34.998 Hz.

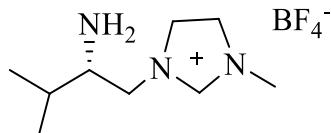


Fig. (1). (*S*)-valine based CIL.

Imidazolium-based CILs derived from the chiral precursors (*S*)-valinol, shown in Fig. (2), have been reported by Ishida *et al.* [14]. These CILs were tested as chiral selectors for the recognition of *rac*- α -methoxy- α -(trifluoromethyl)phenylacetic acid (MTPA) and *rac*-*O*-ethylphenylphosphonothioate (OEPT) enantiomers. The authors found that CIL with a rigid cyclic structure was effective in the enantiomeric recognition, and the CIL having an acyclic structure did not induce

CHAPTER 8

Design, Synthesis, and Organocatalytic Applications of Functionalized Chiral Ionic Liquids

Usha Kumari Verma¹, Akanksha Manhas¹ and Kamal K. Kapoor^{1,*}

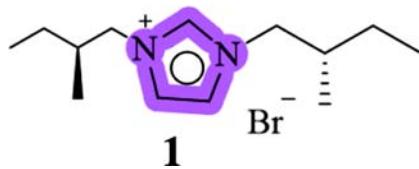
¹ Department of Chemistry, University of Jammu, J&K, India

Abstract: The functionalized chiral ionic liquids (FCILs) can be considered a sub-class of chiral ionic liquids containing special functional groups for their use in fields like organo-catalysis, separation, purification, *etc.* The use of FCILs in the field of organo-catalysis is particularly important because of the recyclability and high efficiency of these systems. In the current chapter, the applications of functionalized chiral ionic liquids in asymmetric organo-catalysis are summarized with a special emphasis on synthetically important organic reactions like asymmetric Michael reaction, aldol reaction, epoxidation, asymmetric transfer hydrogenation, and Diels-Alder reaction.

Keywords: Aldol reaction, Diels-Alder reaction, Epoxidation, Functionalized chiral ionic liquids, Michael reaction, Organocatalysis, Transfer hydrogenation.

INTRODUCTION

Ionic liquids (ILs) are a class of organic compounds composed of ions with melting points below 100 °C [1]. These compounds are generally liquid at room temperature and polar in nature. ILs have much lower melting points as compared to inorganic salts due to the larger sizes of either the cations, the anions, or both [2]. Additionally, their molecular structures possess a high degree of asymmetry, which affects the ionic packing and thus decreases the Coulombic attraction between the ions. This non-coordinating behavior of ions enables them to remain in a liquid state. They show unique properties like high polarity, negligible volatility, high thermal stability, high ionic conductivity, low melting point, and structural designability that render them versatile materials [3]. They are immiscible with organic solvents and have remarkable air and moisture stability [4]. These unique characteristics contribute to the wide range of applications and



* Corresponding author Kamal K. Kapoor: Department of Chemistry, University of Jammu, J&K, India;
E-mail: k2kapoor@yahoo.com

practical uses of ionic liquids, making them ideal candidates for environmentally friendly and recyclable alternatives to volatile organic compounds; they are often used as industrial solvents [5]. Ionic liquids have proven to be highly versatile and eco-friendly substances extensively used in organic syntheses as catalysts or reaction media [6]. Their remarkable design flexibility allows for a wide range of anion-cation combinations, as well as the introduction of diverse functional groups into their structures, resulting in the creation of specialized “task-specific” ionic liquids. Among these task-specific ionic liquids, chiral ionic liquids have attained significant interest and attention across the globe [7]. The CILs are important not only in chiral synthesis and chiral extraction but also in chiral chromatography and chiral NMR shift reagents [8]. The exceptional properties of chiral ionic liquids make them vital tools for achieving enantioselective transformations and facilitating chiral separations in various scientific disciplines [9]. Their broad range of applications and potential for enhancing stereochemistry have positioned them as promising candidates in the quest for greener and more efficient chemical processes.

Chiral Ionic Liquids

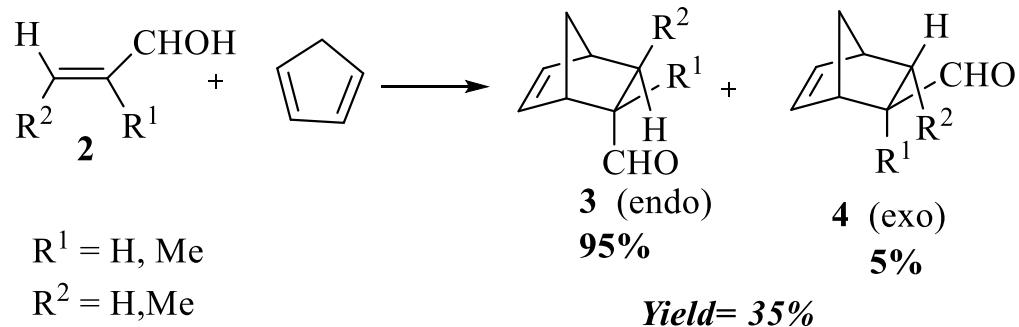

Chiral ionic liquids form a unique subgroup within the category of ionic liquids, distinguished by the presence of chiral ions that possess non-superimposable mirror images. The name “chiral ionic liquids” was used for the first time by Howarth *et al.* in 1997; they described stable chiral dialkyl imidazolium bromide **1** (Fig. 1) as a Lewis acid and applied it as the catalyst in the Diels–Alder reaction, leading to high enantiomeric purity of the target product [10] (Scheme 1).

Fig. (1). Chiral dialkyl imidazolium bromide used in Diels–Alder reaction.

Chiral ionic liquids consist of cations and anions that possess chiral centers, resulting in a stereoisomeric structure. The chirality of these ionic liquids plays a significant role in determining their physicochemical properties, including characteristics such as melting point, viscosity, and solubility. Moreover, it influences their reactivity and selectivity in chemical reactions. A notable advantage of chiral ionic liquids lies in their dual role as solvents and chiral catalysts in asymmetric synthesis. This unique capability allows them to control the stereochemistry of chemical reactions, making them valuable tools in

achieving desired enantiomeric outcomes. Additionally, chiral ionic liquids can serve as chiral selectors in chromatography, enabling the efficient separation of enantiomers. It should be noted that simply having a chiral cation or anion in an ionic liquid does not inherently guarantee that it will exhibit enantioselective properties. For effective enantioseparation, the chiral ionic liquid must possess a suitable structure with an adequate number of binding sites for the enantiomer. The specific arrangement of the chiral components within the ionic liquid is essential for its effectiveness in enantioseparation and other chiral applications.

Scheme (1). CIL catalyzed Diels-Alder reaction.

Designing the Functionalized CIL

The catalytic properties of ionic liquids may be traced back to the frequently observed synergistic effect on catalysis when ionic liquids are used as reaction media. The further elaboration of the simple ILs with covalently connected catalytically active functional groups has significantly expanded the avenue of ionic liquid catalysis, leading to versatile functionalized ionic liquid catalysts.

Functionalized chiral ionic liquids (FCILs) are emerging as a new type of asymmetric organocatalysts and nonclassical chiral ligands. By judiciously anchoring functional groups onto chiral ionic liquids,

The design of FCILs involves the incorporation of specific functional groups into the ionic liquid structure, which can impart desired properties such as increased solubility, enhanced selectivity, or specific reactivity [11]. The development of FCILs represents a significant advancement in the pursuit of greener and more efficient chiral catalysis. A wide range of FCIL catalysts have been developed by strategically incorporating catalytic functional groups into the chiral ion pair skeletons.

The following general strategies are employed for the design and synthesis of FCILs:

CHAPTER 9

Chiral Ionic Liquid Based Biphasic Systems in Enantioseparations

J. Nagendra Babu^{1,*} and Meenu Arora²

¹ Department of Chemistry, Central University of Punjab, VPO Ghudda, Badal Road Bathinda, Punjab-151401, India

² Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Dabwali Road, Bathinda, Punjab-151001, India

Abstract: Aqueous two-phase separation (ATPS) is a powerful, greener tool for the partitioning-based extraction and concentration of compounds in a mixture. ATPS is characterized by the separation of the biphasic layers upon the addition of the aqueous salt solution to aqueous ionic liquids. The aqueous biphasic system using chiral ionic liquids (CILs) has been studied for the resolution of the chiral molecules and their enantioseparation. Thus, in this chapter, a brief introduction to the ATPS formation thermodynamics for the polymer-polymer, polymer-salt, and salt-salt type ionic liquid is given. Apart from this, the effect of the salt, pH, and temperature on the physicochemical behavior of aqueous biphasic systems is discussed. The chiral ionic liquid-based ATPS is further categorized as tetrabutylammonium, choline, imidazolium, tropine, and quinine-based ionic liquids for enantioseparation. The study includes the effect of salts, cation of IL, anion of IL, temperature, pH, and Cu²⁺ ions. The chiral resolution of molecules and biomolecules is studied using these ionic liquids for amino acids and proteins.

Keywords: Aqueous two-phase system (ATPS), Aqueous biphasic system (ABS), Chiral ionic liquids (CILs), Chiral resolution, Chiral separation, Enantiomeric excess, Ionic liquid, Tie line length.

INTRODUCTION

Extraction is a very old and most acceptable technique commercially for industrial separation processes. Pharmaceutical industries have the potential application for the separation of chiral molecules relevant to pharmaceutical and personnel care applications [1]. Chiral ionic liquids have found application in chiral resolution

* Corresponding author J. Nagendra Babu: Department of Chemistry, Central University of Punjab, VPO Ghudda, Badal Road Bathinda, Punjab-151401, India; E-mail: nagendra.babu@cup.edu.in

With phase partitioning of the components being envisaged for a biphasic extraction, which may be liquid-liquid or solid-liquid [2]. The aqueous two-phase system (ATPS) is a promising liquid-liquid extraction (LLE) method for the separation of biological molecules [3]. ATPS was discovered in 1896 by Beijerinck, who observed the biphasic system by partitioning a mixture of gelatin and agar in water [4]. However, further development came in 1956, when Albertson proposed ATPS as a powerful method for biomolecular separation, including peptides, proteins, nucleic acid, *etc.*, using polyethylene glycol (PEG) and a dextran-based polymer-polymer biphasic system [4]. ATPS are biphasic systems comprising two water-rich phases formed by mixing two solutes above a critical concentration. The two solutes can be selected from polymers, salts, sugars, alcohols, or surfactants. These solutes partition into two phases in such a manner that one of the phases is in high quantity and the second solute is in minor quantity. The ATPS phases are both hydrophilic in nature with a lower interfacial tension having applications in biotechnological processes. Apart from this advantage, the ATPS technique is simple, adaptable, biocompatible, and easily scalable [4 - 6]. Using the combinatorial aspects of various types of ATPS, processing technologies could be formulated to achieve selective extractions, preconcentration of dilute solutes, removal of contaminants to a significant level, and denaturation of compounds. Despite the advantages that ATPS has, it is confined to academic research and laboratory use [5, 7 - 9] without significant industrial use. A large number of reviews have appeared in recent years, updating the concepts, advances, and applications of ATPS-based platforms [6, 8 - 30]. The preceding section provides an overview of the thermodynamic fundamentals and key properties of ATPS.

Phase Diagram of ATPS

The ATPS is most commonly prepared by both solutes, *i.e.*, a pair of hydrophilic polymers or salts and a polymer with a salt [31]. The combinations of polymer-polymer, salt-salt, or polymer-salt generate ATPS within a certain concentration range, wherein the phase separation would be controlled by the solvation of the major components of the phases.

Phase diagrams, as depicted in Fig. (1), show a potential working region for an ATPS that happens to be the starting point of an ATPS. ATPS are ternary systems composed of two phase-forming solutes and water. However, ATS systems are depicted in a two-dimensional plot, with the water concentration omitted and pure water corresponding to the origin of the plot. Based on the compositions (weight or molar) of ATPS-forming agents (solute 1 and 2), information about the system is as follows:

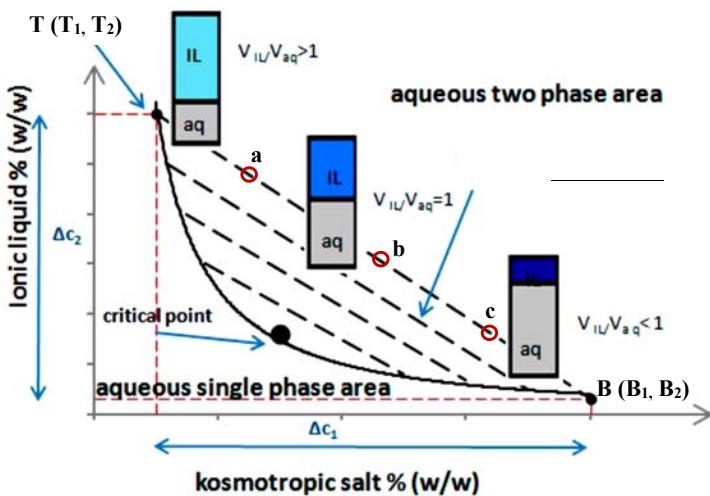


Fig. (1). Depicting a schematic for ATPS formation (Reproduced from [30]).

- Concentration of the solutes 1 and 2 necessary to create a biphasic system,
- The concentration of phase solutes in the lighter (top) and denser (bottom) phases, and
- The ratio of the phase volumes.

The ternary phase diagram, depicted in Fig. (1), is constituted by two phase-forming agents (solutes 1 and 2) and water. A solubility curve (binodal) divides the two-phase region (above the curve) from the single-phase region (below the curve). The composition of the phases in equilibrium is related by the tie-lines (TLs) that connect two points on the binodal curve, which correspond to the concentration of solutes 1 and 2 in the top-lighter and bottom-heavy phases. For example, a, b, and c correspond to three ATPS that have the same composition at equilibria, represented by $T(T_1, T_2)$ and $B(B_1, B_2)$, respectively, for the top and bottom phases. Upon moving along the TL connecting the T and B, the concentration of the solutes in the two phases remains the same. However, total compositions and ratio of the phase volumes *i.e.*, (V_T/V_B) , change on moving along the same TL. Thus, the feature of change in the ratio of phase volumes in ATPS is suitably utilized for the concentration of the analytes by a reduction in the volume of a particular phase by just moving along the associated TL.

TLs are nearly parallel to the adjacent points on the binodal curve, evaluating parameters like tie-line length (TLL) and slope of the tie-line length (SLT). This, in turn, helps predict other TLs in the vicinity. TLL has the same units as the concentration, and it is used to express the influence of the system composition on the partition of solutes. TLL and SLT are related according to Eqs. (1) and (2):

CHAPTER 10

Chiral-Supported Ionic Liquids in Asymmetric Synthesis

Pawanpreet Kaur¹, Anupama Parmar² and Harish Kumar Chopra^{1,*}

¹ Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India

² PG Department of Chemistry, M.M. Modi College, Patiala-147001, Punjab, India

Abstract: Supported ionic liquids (SILs) have been engaged in asymmetric synthesis, providing better recoverability, enantioselectivity, catalytic action, and economical and environmentally benign paths. SILs have minimized the limitations of previous homogeneous and heterogeneous systems and also opened new routes to design chiral heterogeneous systems with improved catalytic efficiency, including stability and recyclability. To carry out asymmetric reactions, both chiral catalysts and ILs have been supported onto a single support material, generally through a physical immobilization approach. In some cases, chiral ionic liquids have been grafted onto supports to obtain chiral SIL. The chirality has also been transferred into the resulting heterogeneous catalyst by covalently grafting chiral catalysts onto catalytic centers of supports by using ionic liquids as linkers. In this chapter, the potential catalytic role of all types of chiral SILs in several asymmetric organic reactions, such as hydrogenation, Mannich, epoxidation, Michael addition, Strecker, Diels-Alder reaction, etc., has been discussed.

Keywords: Asymmetric synthesis, Asymmetric reactions, Anantiomeric excess, Chiral catalysts, Chemical transformations, Chirality, Diastereoselective, Eco-friendly, Enantioselectivity, Grafting, Heterogeneous systems, Immobilization, IL-chiral catalysts, Reusability, Supported ionic liquids.

INTRODUCTION

Stereoisomers are organic molecules that have dissimilar atomic arrangements in three-dimensional space but possess similar connectivity of atoms [1]. In a chiral environment, these molecules can possess different physical or chemical properties from each other [2]. Therefore, enantioselective or asymmetric synthesis provides stereoisomeric products with unequal amounts [3]. Asymmetric synthesis is an approach to synthesize single enantiomeric products

* Corresponding author Harish Kumar Chopra: Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India; E-mail: harishchopra@sliet.ac.in

[4]. Biological systems give different responses to both enantiomers [5]. Generally, to form biologically active drugs or compounds, enantiomeric pure organic molecules are used as starting materials [6].

In an enantioselective transformation, asymmetric induction can be achieved through different strategies such as chiral auxiliaries, chiral solvents, chiral reagents or substrates, chiral enzymes or catalysts, *etc* [7 - 9]. Asymmetric synthesis plays an important role in organocatalysis [10, 11]. In recent years, asymmetric organocatalysis has been considered an excellent approach for the synthesis of enantiomeric pure organic species under mild operating conditions [12]. Chiral catalysts do not interfere in asymmetric reaction processes, and also, their sub-stoichiometric quantity used may improve catalytic efficiency, avoid the production of waste materials, and reduce cost (in comparison to expensive auxiliaries, reagents, and substrates) [13 - 15]. Asymmetric catalysis can be achieved by using heterogeneous or homogeneous chiral catalysts [16, 17].

Although several developments have been found in homogeneous asymmetric catalysis, the high cost of chiral catalysts/ligands encourages the researcher to move toward the designing of easily recoverable heterogeneous chiral catalysts [18]. However, in contrast to homogeneous catalytic systems, heterogeneous systems containing immobilized chiral catalysts onto particular support material provided low enantioselectivity and catalytic efficiency because of their lesser interactions with substrates [19]. Also, the nature of the solvent influences enantioselectivity, stability, and catalytic performance during asymmetric chemical transformations [20]. To overcome all these issues, chiral catalysts have been replaced by chiral ionic liquids in heterogeneous systems, which play an amazing role in asymmetric synthesis [21]. In another route, both chiral catalysts and ionic liquids have been immobilized onto supports to obtain heterogeneous catalysts [22].

Room temperature ionic liquids (ILs) are molten organic ionic compounds that exhibit melting points below 25°C and are composed of asymmetric organic/inorganic anions and organic cations [23]. Their structural variations, such as different sizes of cation or anion, delocalized charge in the cationic part, *etc.*, are responsible for their excellent physicochemical properties like low vapor pressure, high thermal/chemical stability, high density, high ionic conductivity, high viscosity, non-flammable character, and good solvation power [24, 25]. With the functionalization of cationic moiety or by varying anion/cation in IL structures, some chemical as well as physical properties can be easily tuned like acidity/basicity, solubility, coordinating power, and hydrophobic or hydrophilic character [26]. Therefore, ILs are considered designer liquids/solvents [27].

Hence, ILs have explored new opportunities in several fields, such as sensors, catalysis, electrochemistry, bio-catalysis, *etc* [28 - 32].

It is already documented that ILs showed several benefits in important chemical transformations [33]. The properties like vapor pressure and good solvation ability make them good green alternatives to traditional organic solvents [34]. In a variety of organic reactions, especially in asymmetric transformations, ILs act as a reaction medium [35]. ILs also have a tendency to dissolve several inorganic, organic, and complex substrates [36]. In addition, these stabilize distinct metal complexes/catalysts during organic transformations [37]. Besides, the use of ILs as a reaction medium in asymmetric reactions offers facile recycling of expensive chiral catalysts, increases turnover numbers, and improves the enantioselectivity and activity of catalysts in comparison to organic solvents [38]. Although ILs show strong interactions with substrates, thus improving enantioselectivity, in many cases, the high viscosity of ILs creates mass transfer issues [39].

In recent years, IL-tagged chiral catalysts have also gained significant attention in asymmetric synthesis [40, 41]. It was concluded that in an asymmetric reaction, a combination of IL and the chiral backbone of catalysts may strengthen the synergistic interactions among two participated components and, hence, may improve the impact of counter-ions of IL on the catalytic performances [42]. This approach provides a route for reusing the chiral catalysts by using a biphasic liquid-liquid system, which consists of two phases: one phase contains reactants/products, while the other has IL-chiral catalysts. However, this system improves several reaction parameters such as environmental, economic, and sustainability path, but many ligands/chiral catalysts are toxic and expensive [43].

ILs show effectiveness in asymmetric synthesis, but their large content is required for catalysis [44]. Also, most ILs are expensive, and some show a toxic nature, which restricts their use in several practical applications [45]. In addition, due to the highly viscous nature of ILs, only the diffusion layer (small portion) acts as reaction media while more content remains unusable or inaccessible; thus, to overcome these limitations, the new heterogeneous materials *i.e.*, supported ionic liquids (SILs), have been explored [46, 47]. These show amazing catalytic performance in asymmetric reactions [48]. The heterogenization of chiral catalysts with ILs offers a new class of SIL catalyst systems that possess excellent characteristics of ILs and provide easy recoverability of chiral catalysts [49]. The main reason behind the development of heterogeneous catalysts was some limitations associated with homogeneous catalysis, such as difficult recovery of catalyst, deactivation of catalysts, and difficult separation of products from reaction mixture [50]. However, biphasic organic liquid/IL systems have been used to solve recovery and separation problems, but they need large IL content,

SUBJECT INDEX

A

Acetylcholinesterase 51
 Acid 3, 41, 62, 63, 66, 74, 81, 82, 84, 85, 86, 93, 94, 95, 99, 100, 105, 106, 114, 120, 121, 122, 123, 124, 134, 139, 140, 151, 158, 180, 184, 229
 acetic 66, 99
 alkylphosphonium 99
 aspartic 81
 bile 95
 boric 84, 86
 boronic 41
 carboxylic 100, 139, 229
 chloroacetic 62, 63
 decanoic 66
 hazardous trifluoroacetic 158
 hydrochloric 158
 lactic 3, 74, 93, 94, 114
 mandelic 74, 121, 123, 124, 140, 151
 novel maltobionic 84
 nucleic 94, 180
 phenylacetic 134
 phenyllactic 121, 123
 phenylsuccinic 122
 pipecolic 105
 polyacrylic 184
 propanoic 84, 85
 propionic 66
 sodium citrate/citric 106
 sulfonic 120
 tetramethylammonium-glutamic 82
 tetramethylammonium maltobionic 84, 86
 vanilmandelic 121
 Activity 21, 44, 54, 55, 63, 115, 132
 antioxidant 54, 55
 biological 21, 63, 115
 herbicidal 44
 pharmacokinetic 132
 Amino acid(s) (AA) 8, 31, 48, 49, 50, 51, 53, 54, 55, 66, 79, 80, 102, 103, 104, 105,

106, 114, 123, 144, 151, 188, 190, 191, 192, 193, 194, 195, 197, 199
 derivatives 8
 ionic liquids (AAILs) 49, 50, 53, 54, 55, 79, 80, 102, 104, 105, 106, 123
 Aminocatalysis 153
 Antibiotic(s) 42, 73, 79, 98, 114, 132, 164
 lincomycin 114
 macrolide 164
 -resistant bacteria 42
 Antimicrobial resistance 42
 Application(s) 45, 65, 118, 120, 125
 biomedical 45, 65
 chromatographic 125
 of gas chromatography 118
 of liquid chromatography 120
 Aqueous biphasic system (ABS) 57, 179, 201
 Asymmetric 10, 38, 56, 148, 153, 161, 162, 167, 168, 169, 215, 230, 232, 235
 hydrogenation reaction 215
 induction reactions 10
 Mannich reaction 56, 235
 Michael addition reaction 38, 56, 153, 161, 230, 232
 Michael reaction 148, 153, 162, 232
 transfer hydrogenation (ATH) 148, 167, 168, 169
 ATPs 179, 183, 184, 202
 -based methods 202
 liquid-based 179, 183
 polymer-based 184
 Aza-Diels-Alder reactions 11

B

Benzoin condensation reaction 2
 Biodegradability properties 66
 Biomolecule cytochrome 195

C

Capillary 73, 96, 98, 99, 114

electrochromatography (CEC) 73, 96, 98, 114
electrokinetic chromatography (CEKC) 96
zone electrophoresis (CZE) 96, 99
Carbohydrate-based ionic liquid's properties 24
Catalyze 5, 162, 217, 221, 228, 233, 236
diels-alder reactions 228
Catalyzed 153, 155, 227, 229, 231
acylation reaction 229
Aza-Baylis-Hillman reaction 155
Baylis-Hillman reaction 155
Michael reaction 153, 231
Mukaiyama-Aldol reaction 227
Chiral 4, 9, 34, 49, 73, 75, 93, 94, 105, 113, 116, 121, 125, 126, 149, 150, 154, 156, 199
agents 113
anionic component 94
cationic component 93, 94
chromatography 49, 149
components 105, 150
compounds 34, 73, 75, 116, 121, 125, 126
HPLC 199
induction 4, 9, 154, 156
Chiral ionic liquid(s) 50, 116, 119, 175
catalyst 50
in gas chromatography 116
in liquid chromatography 119
structure 175
Chiral separation(s) 21, 73, 74, 80, 81, 84, 95, 98, 99, 100, 105, 106, 112, 122, 126
performance 105
techniques 21
Choline-based chiral ionic liquids 186
Chromatographic 54, 95, 98, 112, 114, 116, 125, 133
columns 54
mechanism 95
methods 112, 114, 116, 125
Chromatographic techniques 112, 114, 125
gas 112
Chromatography 114, 116, 122, 126
multimode 122
nano-liquid 116
supercritical 114
supercritical fluid 116, 126
Chromophore 100
CIL(s) 49, 65, 74, 80, 94, 117, 119, 134, 142, 144, 168
alcohol-derived 80
amide-based 168
ammonium-based 142
for electrophoretic separations 74
in electrophoretic separations 94
in gas chromatography 117
in liquid chromatography 49, 119
in spectroscopic techniques 134, 144
-mediated chiral separation by liquid chromatography 65
on enantiomeric recognition 80
CIL-based 102, 144, 186
ATPS 186
chiral 144
chiral selector 102
Clindamycin phosphate (CP) 81, 83, 85, 86
Constants 98, 135
dielectric 135
mobile phase distribution equilibrium 98
Coulombic 4, 148
attraction 148
interactions 4
Covalent bonding 95
Critical micelle concentration (CMC) 97, 98
CSP in gas chromatography 116
Cytochrome 195

D

DESs, soluble 81
Detection 14, 83, 95, 99
cathodic 95
electrophoretic 99
mass spectrometric 99
Diastereomeric pairs 133
Differential scanning coulometry (DSC) 54, 55
Drugs 56, 65, 73, 80, 81, 84, 85, 96, 120, 121, 132, 164
amino alcohol 84
anti-inflammatory 120, 121
anticancer 164
macromolecular 65
peptide 56

E

EI-MS techniques 61
Electrokinetic chromatography (EKC) 73, 80, 81, 96, 97, 98, 99

Electrolytes 20, 97, 99
Electrophoretic 72, 73, 74, 75, 76, 77, 81, 93, 94, 95, 96, 98, 99, 103, 105
mobility 72, 73, 75, 76, 77, 81, 94, 95, 98, 103
movements 96
separations 74, 77, 93, 94, 99, 105
tests 99
Emission spectroscopy 143
Empirical equations 182, 183
Enamine-based organocatalytic reactions 153
Enantiomeric recognition 80, 133, 134, 135, 136, 137, 141, 143, 144
Enantioselective 4, 160, 213, 229, 234
catalytic reactions 4
Michael addition 229
Michael reactions 160
Strecker reaction 234
transformation 213
Enantioseparate 107
Enantioseparation(s) 72, 77, 78, 103, 106, 116, 133, 174
chromatographic 116
electrophoretic 106
mechanism 77, 103
process 78, 133, 174
techniques 72
Energy, solar 43
Enzymes, proteolytic 54
Epoxidation reaction 166, 217

F

Fatty acid methyl esters (FAMEs) 119
Flame ionization 119
Flory-Huggins theory 184
Fluorescence 114, 132, 133, 134, 141, 142, 143, 144
approach 142
bands 142
intensities 141, 142, 143
spectrophotometry 141
spectroscopy 114, 132, 133, 134, 141, 142, 144
Fluorescent receptor 143

G

Gas chromatography (GC) 73, 94, 113, 114, 116, 117, 118, 141

GC conditions 118, 119
Glass transition 187
Glucose-based CIL application 39, 40, 41
in dehydrohalogenation reaction 39
Glucose-based ionic liquids 27
Glycopeptides 123
Glycosylation 23

H

High-performance liquid chromatography (HPLC) 73, 94, 98, 103, 114, 116, 119, 125
Hillman reactions 154
HRMS spectroscopic techniques 58
Hydrocarbon(s) 98, 120, 122
polycyclic aromatic 122
radicals 98
Hydrogen 77, 115, 124
acidic 115
bond acceptor 124
donor 77
Hydrogen bonding 76, 77, 78, 85, 87, 95, 101, 102, 103, 143, 154, 163, 166, 190, 196, 199, 202
catalysis 154
interactions 76, 77, 85, 143, 190, 199
Hydrogenation 8, 10, 171, 212, 215, 216, 217
enantioselective 216
reactions 8, 10, 171, 215, 216
Hydrophobic 65, 66, 97, 185, 193, 194
deep eutectic solvent (HDES) 65, 66
nature 193, 194
pollutants 97
polymers 185

I

IL-chiral catalysts 212, 214
Interfacial tension 183, 184
Ion 5, 7, 9, 81, 121, 199
exchange reaction 81
-metathesis 199
-pairing effect 5, 7, 9
-pairing interactions 121
Ionic 35, 75, 81, 97, 100, 183, 190
cholinium-based 190
glucose-based 35
functionality 75

Ionic liquid(s) 11, 20, 44, 58, 66, 74, 98, 99, 100, 143, 150, 163
catalysis 150
concentrations 98
derivative chiral 11
developing biobased 20
five synthesized chiral 163
fluorescent 143
fluoride dicationic 99
functions 100
properties 44
synthesis of chiral 58, 66, 74
Ionic liquid synthesis 22, 23, 115, 123, 170
carbohydrate-based 22, 23, 170
Isomannide-based ionic liquids 33, 34, 135

K

Ketones, cyclic 171

L

Laccase stability and activity 64
Lewis 166, 223
-acid 223
base 166
Ligand-exchange CE (LECE) 73, 96, 103
Liquid chromatography (LC) 49, 65, 113, 116, 119, 120, 121, 122, 126
applications of CILs in 49, 119
chiral ionic 126
Liquid-liquid extraction (LLE) 114, 180, 196

M

Magnetic nanoparticles 231
Mannich reaction 7, 220, 234
Mass 14, 87, 94, 95, 183
balance relationship 183
spectrometry (MS) 14, 87, 94, 95
Mechanism 72, 74, 75, 76, 77, 95, 123, 132, 184, 185, 198
electrophoretic 95
of enantioseparations 75
MEKC systems 81
Menschutkin reaction 115, 123
Merchuk equation 183, 193
Methods 98, 105, 126, 158, 182, 202
computational 126
electrophoretic 98

energy-efficient 202
ion exchange resin 158
single glycogen separation 105
titration-based 182
Micellar electrokinetic chromatography (MEKC) 73, 81, 96, 97, 98
Michael 10, 12, 13, 38, 39, 50, 55, 56, 136, 148, 154, 156, 157, 158, 160, 161, 162, 163, 212, 220, 229, 230, 231
acceptors 158
addition reaction 38, 39, 56, 156, 158, 160, 162, 230
additions 10, 12, 13, 38, 55, 157, 160, 162, 212, 220, 229
reaction 50, 136, 148, 154, 161, 162, 163, 231
Microbial breakdown 51
Microemulsion electrokinetic chromatography (MEEKC) 73, 96, 98
Microfluidic devices 182
Micropatterned droplets 183
Migration 76, 96
electrophoretic 96
velocities 76
Minimal inhibitory concentration (MIC) 63
Mn-based catalyst 217
Mobile additives in liquid chromatography 122
MolDock score value 124
Monolithic columns 98, 100
liquid-based 100
Morita-Baylis-Hillman reaction 8
Mosher's acid 61, 137, 138, 139, 140
Multicomponent reactions 57

N

Nature 183, 188, 214, 223
chemical 183
hydrophobic/hydrophilic 188
moisture-sensitive 223
toxic 214
NHC-mediated cross-annulation reaction 156
NIR techniques 144
NMR 34, 49, 51, 58, 61, 65, 114, 132, 133, 134, 137, 138, 140, 144
analysis 65
and fluorescence spectroscopy 134, 144
and FTIR spectra 49
and HRMS spectroscopic techniques 58

coupling constant 134
 signals 133, 137
 spectroscopic techniques 51
 spectroscopy 34, 61, 114, 132, 133, 134, 137, 138, 140
 Non-innocent nature of ionic liquids 5
 Nonmolecular interactions 87
 Noscapine-based chiral ionic liquid 168
 Nuclear magnetic resonance (NMR) 9, 54, 55, 61, 62, 63, 94, 132, 134, 136, 138, 140, 199

O

Organic 34, 40, 49, 100, 149, 153, 229, 236
 cations, adsorbed 100
 synthesis 34, 40, 49, 149, 153, 229, 236
 Organic acids 66, 152
 natural 66
 Organic solvents 4, 19, 48, 49, 65, 74, 84, 97, 113, 119, 148, 175, 214, 221
 conventional 49
 molecular 4
 substituted 113
 traditional 19, 65, 214
 Organocatalysis 10, 56, 114, 133, 148, 153, 154, 157, 158, 162, 175, 213
 enamine-based 158
 Oxygen atoms 100, 124

P

Phase transfer catalysts (PTCs) 39
 Phenyl glycidate product 220
 Plausible transition state for aldol reaction 164
 Polymeric ionic liquids (PILs) 42, 53
 Principle of capillary electrophoresis 94
 Process 63, 180
 biotechnological 180
 oxidative esterification 63
 Properties 1, 2, 4, 19, 20, 21, 23, 24, 44, 45, 48, 49, 51, 57, 58, 60, 63, 64, 65, 73, 78, 97, 112, 113, 183
 antiadhesive 64
 antifungal 63
 antimicrobial 45, 57
 biopharmaceutical 65
 electrophoretic 97
 electrostatic 78
 ionic 23, 44

metabolic 73
 rheological 183
 Protic chiral ionic liquids (PCILs) 60, 136, 137, 142, 143, 154
 Pyrrolidine-based ionic-liquid 160

R

Racemic 9, 34, 39, 123, 135, 136
 molecules 123
 Mosher's acid 34, 135, 136
 Reactions 8, 23, 39, 40, 41, 148, 172, 212, 214, 223
 dehydrochlorination 39
 enantioselective 8
 esterification 40
 glycosylation 23
 homocoupling 41
 organic 148, 172, 212, 214, 223
 Ribose-based 25, 26, 38
 CIL 25, 26, 38
 ionic liquids 25

S

Salts 13, 62, 123, 148, 185
 benzothiazole 62
 chaotropic 123
 inorganic 148, 185
 organic 13, 185
 Separate DNA fragments 99
 Separation 80, 81, 107, 133
 chromatographic 133
 enantiometric 80, 81
 enantioselective 107
 SIL catalyst systems 214
 Solventless Michael addition 229
 Spectroscopy 61, 94, 113, 124, 138
 Stationary phases in liquid chromatography 121
 Stimuli-responsive thermochromic systems 43
 Synthesis 25, 27, 170
 of chiral alcohols 170
 of galactose-based ionic liquids 27
 of glucose-based ionic liquids 27
 of ribose-based ionic liquids 25
 Systems 97, 126, 190
 chromatographic 126
 electrophoretic 97
 monophasic 190

T

Techniques 61, 66, 73, 87, 93, 94, 95, 97, 98,
99, 105, 114, 133, 179
electrophoretic 93, 97, 105
electrophoretic-based in-capillary pre-
concentration 95
microwave 61
Terpenoid-based chiral ionic liquids 57
Transfer hydrogenation 148
Transformations 6, 10, 48, 160, 175, 214, 229
achieving chiral 160
facile 229
organic 48, 175, 214

V

Vapor pressure 74, 94, 112, 214

W

Waal(s) 76, 95, 124
interactions 76
forces 95, 124

Harish Kumar Chopra

Prof. Harish Kumar Chopra is a full professor of chemistry at Sant Longowal Institute of Engineering and Technology (SLIET), Longowal, India. He obtained Ph.D. in organic chemistry from Punjabi University Patiala. His research focuses on organic synthesis, catalysis and ionic liquids etc. He has published more than 100 papers in international journals. He has authored 06 books and published several book chapters. He has delivered several invited lectures at national conferences/symposiums. He has supervised 15 Ph.D. and 22 M. Tech. and 30 PG students. He has also served as editor-in-chief of the Journal of Punjab Academy of Sciences.

Avtar Singh

Prof. Avtar Singh did Ph.D. from SLIET Longowal in 2019. After working as research associate at Central University of Rajasthan and then a post-doctoral fellow at IIT Guwahati, he joined as an assistant professor (Guest Faculty) at SLIET Longowal. His research areas include synthesis and applications of chiral ionic liquids and organocatalysis. He has published 15 articles/ book chapters and attended several national/international conferences.

Anupama Parmar

Prof. Anupama Parmar received Ph.D. from Punjabi University Patiala in 1995. She worked as research associate in the Department of Pharmaceutical Sciences & Drug Research followed by Pool Scientist (CSIR) in the Department of Chemistry, P. U. Patiala/SLIET, Longowal. She then served as assistant professor at SLIET Longowal, and then as assistant professor at M. M. Modi College, Patiala. Her research interests include organic synthesis, natural product chemistry and medicinal chemistry. She has published 03 international books and 35 articles/ book chapters and attended several national/international conferences.